The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer‐associated fibroblasts (CAFs), a type of perpetually activated fibroblasts, have been implicated to have a strong tumor‐modulating effect and play a key role in areas such as drug resistance. Identification of CAFs has typically been carried based on the expression of various “CAF markers”, such as fibroblast activation protein alpha (FAP) and alpha smooth muscle actin (αSMA), which separates them from the larger pool of fibroblasts present in the body. However, as outlined in this Review, the expression of various commonly used fibroblast markers is extremely heterogeneous and varies strongly between different CAF subpopulations. As such, novel selection methods based on cellular function, as well as further characterizing research, are vital for the standardization of CAF identification in order to improve the cross‐applicability of different research studies in the field. The aim of this review is to give a thorough overview of the commonly used fibroblast markers in the field and their various strengths and, more importantly, their weaknesses, as well as to highlight potential future avenues for CAF identification and targeting.
Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo.
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.