Vitamin A (all-trans retinol) plays critical roles in mammalian development and vision. Since vitamin A is food-derived, tissue-specific uptake and storage mechanism are needed. In the eye, uptake of RBP4-retinol is mediated by the receptor Stra6, whereas the receptor mediating RBP4 binding and retinol transport into the liver has just recently been discovered. Here we examined the role of zebrafish retinol binding protein receptor 2 (Rbpr2) for RBP4-retinol uptake in developing embryos, using eye development and vision as sensitive readouts. In cultured cells, Rbpr2 localized to membranes and promoted RBP4-retinol uptake. In larvae, Rbpr2 expression was detected in developing intestinal enterocytes and liver hepatocytes. Two rbpr2 mutant zebrafish lines, each resulting in Rbpr2 deficiency, exhibit a small eye defect, and systemic malformations including hydrocephaly and cardiac edema, phenotypes associated with vitamin A deficiency. In the retina, Rbpr2 loss resulted in shorter photoreceptor outer segments, mislocalization and decrease in visual pigments, decreased expression of retinoic acid-responsive genes and photoreceptor cell loss, overall leading to a reduction of visual function. Together, these results demonstrate that Rbpr2-mediated RBP4-retinol uptake in developing liver and intestine is necessary to provide sufficient substrate for ocular retinoid production required for photoreceptor cell maintenance and visual function.
We previously have shown that the highly conserved eight-protein exocyst trafficking complex is required for ciliogenesis in kidney tubule cells. We hypothesized here that ciliogenic programs are conserved across organs and species. To determine whether renal primary ciliogenic programs are conserved in the eye, and to characterize the function and mechanisms by which the exocyst regulates eye development in zebrafish, we focused on , a central component of the exocyst complex, by analyzing both zebrafish mutants, and photoreceptor-specific Exoc5 knock-out mice. Two separate mutant zebrafish lines phenocopied morphants and, strikingly, exhibited a virtual absence of photoreceptors, along with abnormal retinal development and cell death. Because the zebrafish mutant was a global knockout, we also observed defects in several ciliated organs, including the brain (hydrocephalus), heart (cardiac edema), and kidney (disordered and shorter cilia). knockout increased phosphorylation of the regulatory protein Mob1, consistent with Hippo pathway activation. mutant zebrafish rescue with human EXOC5 mRNA completely reversed the mutant phenotype. We accomplished photoreceptor-specific knockout of Exoc5 with our fl/fl mouse line crossed with a rhodopsin-Cre driver line. In photoreceptor-specific knock-out mice, the photoreceptor outer segment structure was severely impaired at 4 weeks of age, although a full-field electroretinogram indicated a visual response was still present. However, by 6 weeks, visual responses were eliminated. In summary, we show that ciliogenesis programs are conserved in the kidneys and eyes of zebrafish and mice and that the exocyst is necessary for photoreceptor ciliogenesis and retinal development, most likely by trafficking cilia and outer-segment proteins.
A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A connexin43-based peptide mimetic, αCT1 was developed to competitively block interactions at the PDZ2 domain of ZO-1, thereby inhibiting ligands that selectively bind to this domain. We hypothesized that targeting ZO-1 signaling using αCT1 would maintain BRB integrity and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. RPE-cell barrier dysfunction was generated in mice using laser-photocoagulation triggering choroidal neovascularization (CNV), or bright-light exposure leading to morphological damage. αCT1 was delivered via eyedrops. αCT1 treatment reduced CNV development and fluid leakage as determined by optical coherence tomography, and damage was correlated with disruption in cellular integrity of surrounding RPE cells. Light-damage significantly disrupted RPE cell morphology as determined by ZO-1 and Occludin staining and tiling pattern analysis, which was prevented by αCT1 pre-treatment. In vitro experiments using RPE and MDCK monolayers indicated that αCT1 stabilizes tight junctions, independent of its effects on Cx43. Taken together, stabilization of intercellular junctions by αCT1 was effective in ameliorating RPE dysfunction in models of AMD-like pathology.
Complement activation plays a significant role in age-related macular degeneration (AMD) pathogenesis, and polymorphisms interfering with factor H (fH) function, a complement alternative pathway (AP) inhibitor, are associated with increased AMD risk. We have previously validated an AP inhibitor, a fusion protein consisting of a complement receptor 2 fragment linked to the inhibitory domain of fH (CR2-fH) as an efficacious treatment for choroidal neovascularization (CNV) when delivered intravenously. Here we tested an alternative approach of AAV-mediated delivery (AAV5-VMD2-CR2-fH or AAV5-VMD2-mCherry) using subretinal delivery in C57BL/6J mice. Secretion of CR2-fH was confirmed in polarized retinal pigment epithelium (RPE) cells. A safe concentration of AAV5-VMD2-CR2-fH was identified using electroretinography, optical coherence tomography (OCT), RPE morphology, and antibody profiling. One month after gene delivery, CNV was induced using argon laser photocoagulation. OCT assessment demonstrated reduced CNV with AAV5-VMD2-CR2-fH administration. Bioavailability studies revealed that gene-therapy delivered similar levels of CR2-fH to the RPE/choroid as treatment by intravenous injections, and C3a ELISA verified reduced CNV-associated ocular C3a production. These results contribute to existing data illustrating the importance of the AP of complement in CNV development and its potential role in AMD treatment. Demonstration of AAV-vector efficacy opens new avenues for the development of treatment strategies.
Age-related macular degeneration (AMD) is the leading cause of blindness in the US. Polymorphisms in complement components are associated with increased AMD risk, and it has been hypothesized that an overactive complement system is partially responsible for AMD pathology. Choroidal neovascularization (CNV) has two phases, injury/angiogenesis and repair/ fibrosis. Complement activation has been shown to be involved in the angiogenesis phase of murine CNV, but has not been investigated during repair. Anaphylatoxin (C3a and C5a) signaling in particular has been shown to be involved in both tissue injury and repair in other models. CNV was triggered by laser-induced photocoagulation in C57BL/6J mice, and lesion sizes measured by optical coherence tomography. Alternative pathway (AP) activation or C3a-receptor (C3aR) and C5a-receptor (C5aR) engagement was inhibited during the repair phase only of CNV with the APinhibitor CR2-fH, a C3aR antagonist (N2-[(2,2-diphenylethoxy)acetyl]-L-arginine, TFA), or a C5a blocking antibody (CLS026), respectively. Repair after CNV was also investigated in C3aR/C5aR double knockout mice. CR2-fH treatment normalized anaphylatoxin levels in the eye and accelerated regression of CNV lesions. In contrast, blockade of anaphylatoxin-receptor signaling pharmacologically or genetically did not significantly alter the course of lesion repair. These results suggest that continued complement activation prevents fibrotic scar resolution, and emphasizes the importance of reducing anaphylatoxins to homeostatic levels. This duality of complement, playing a role in injury and repair, will need to be considered when selecting a complement inhibitory strategy for AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.