Damp indoor environments contaminated with different mold species may contribute to the development and exacerbation of respiratory illnesses. Human bronchial epithelial BEAS-2B cells were exposed to X-ray treated spores and hyphal fragments from pure cultures of Aspergillus fumigatus, Penicillum chrysogenum, Aspergillus versicolor and Stachybotrys chartarum. Hyphal fragments of A. fumigatus and P. chrysogenum induced expression and release of the pro-inflammatory cytokine interleukin (IL)-6 and the chemokine IL-8, while none of the other hyphal preparations had effects. Hyphal fragments from A. fumigatus and P. chrysogenum also increased the expression of IL-1α, IL-1β and tumor necrosis factor (TNF)-α, but these cytokines were not released. X-ray treated spores had little or no inflammatory potential. Attenuating Toll-like receptor (TLR)-2 by blocking antibodies strongly reduced the A. fumigatus and P. chrysogenum hyphae-induced IL-6 and IL-8 release, whereas TLR4 antagonist treatment was without effects. Untreated A. fumigatus spores formed hyphae and triggered expression of pro-inflammatory genes with similarities to the effects of hyphal fragments. In conclusion, while X-ray treated spores induced no pro-inflammatory responses, hyphal fragments of A. fumigatus and P. chrysogenum enhanced a TLR2-dependent expression and release of IL-6 and IL-8.
Mold particles from Aspergillus fumigatus, Penicillium chrysogenum, Aspergillus versicolor, and Stachybotrys chartarum have been linked to respiratory-related diseases. We characterized X-ray-inactivated spores and hyphae fragments from these species by number of particles, morphology, and mycotoxin, β-glucan and protease content/activity. The pro-inflammatory properties of mold particles were examined in human bronchial epithelial cells (BEAS-2B) and THP-1 monocytes and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1. Spores from P. chrysogenum and S. chartarum contained some hyphae fragments, whereas the other preparations contained either spores or hyphae. Each mold species produced mainly one gelatin-degrading protease that was either of the metallo-or serine type, while one remains unclassified.Mycotoxin levels were generally low. Detectable levels of β-glucans were found mainly in hyphae particle preparations. PMA-differentiated THP-1 macrophages were by far the most sensitive model with effects in the order of 10 ng/cm 2 . Hyphae preparations of A. fumigatus and P. chrysogenum were more potent than respective spore preparations, whereas the opposite seems to be true for A. versicolor and S. chartarum.Hyphae fragments of A. fumigatus, P. chrysogenum, and A. versicolor enhanced the release of metalloprotease (proMMP-9) most markedly. In conclusion, species, growth stage, and characteristics are all important factors for pro-inflammatory potential. K E Y W O R D Sβ-glucans, cytokines, mold particles, morphology, mycotoxins, proteases | BACKGROUNDThere is sufficient evidence from epidemiological studies of associations between indoor dampness/mold and adverse health effects including respiratory symptoms, respiratory infections, and exacerbation of asthma. 1,2 Several kinds of indoor air pollution agents may contribute. Mold has been suggested to be particularly important, as it may not only cause infection and toxic effects, but also trigger allergic and non-allergic inflammatory reactions that may be linked to various respiratory-related diseases. [3][4][5] Quantitative guidelines (thresholds) for acceptable levels of indoor contamination of microorganisms/mold have not been suggested. 1 However, for the work environment where exposure levels can be much higher, a proposal has been made. 6 Species that commonly occur in moist indoor environments into tangled mass of networks known as mycelia. Spores from many species, but not all, are easily aerosolized. Spores from some species, for example, S. chartarum are produced in slimy aggregates which are dispersed by water and may become airborne after secondary dispersion. 6 Furthermore, experimental studies have demonstrated that not only spores but also hyphae fragments can be liberated from fungal cultures. [7][8][9] Recently, an immune-microscopic method for their detection has been described. 10 In addition to direct microscopic quantification, 9 components like ergosterol, 11 polysaccharides such as β(1→3)-glucans 12 and enzymes such as p...
Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.