The most commonly used procedure for prediction of the behaviour of laterally loaded piles is the P–y curve formulation, which gives a simple but efficient framework to predict the response of the pile. This framework is limited to a single direction of loading, while there are several situations in which a pile is subjected to lateral loads with varying direction, as for example in the case of wind or wave loads. Here an extended framework for P–y curve modelling is presented, in which several springs are considered around the pile perimeter at each depth. The advantage of this framework is that it remains as simple and practical as the original P–y curve method and does not need any further information or parameters. A procedure is proposed for the extension of a given unidirectional model to the corresponding multi-directional one. The effects of multi-directional loading are discussed based on the simulation results. With a change in loading direction, misalignment between load direction and total displacement occurs. In addition, this quite simple model enables deduction of the profile of irreversible soil displacements around the pile at various depths.
Suction embedded caissons are efficient and economic solutions to anchor floating structures. A more recent caisson application is to support seafloor structures such as manifolds, PLEMs, pumps, etc. For a deepwater hydrocarbon field, many types of seafloor structures are required, each with their own characteristics and slightly different design. Caisson designs increasingly use resistance envelope methodology. This eliminates non-linear 3D FE analyses (except for assessing responses or soil reactions), and facilitates probabilistic and optimisation analyses. In general, there is a requirement for a reliable method of assessing caisson capacity under general VHM load. Resistance envelope equations for “deep” circular caissons (1.5 < L/D < 6) have been presented by Kay and Palix (2010) for a wide range of soil undrained shear strength profiles. This paper extends the study to cover near-surface caissons (i.e. 0 ≤ L/D ≤ 1.5). As in previous studies, a quasi 3D non-linear finite element program (HARMONY) was the primary numerical analysis tool. Three soil shear strength profiles were investigated for 13 caisson embedment ratios. In the range 0 ≤ L/D ≤ 1.5, VHM envelope shapes transform from a “scallop” at L/D ≈ 0 into a “tongue” above a critical caisson embedment ratio (L/D)crit of about 0.5 The equations originally developed for the rotated ellipse/ellipsoid (i.e. “tongue”-shaped envelope) in Kay and Palix (2010) for L/D ≤ 1.5 have been extended for (L/D)crit ≥ L/D. All parameters are simple functions of L/D and soil shear strength profile. Major limitations and assumptions made were (a) foundation-soil tension was permitted and (b) no internal scoop failure (i.e. within the soil plug inside the caisson) was possible. These are important for low L/D: both may adversely affect VHM resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.