Ethyl tert-butyl ether (ETBE) may be used in the future as an additive to gasoline to increase oxygen content and reduce tailpipe emissions of pollutants. Therefore, widespread human exposure may occur. To contribute to the characterization of potential adverse effects of ETBE, its biotransformation was compared in humans and rats after inhalation exposure. Human volunteers (3 males and 3 females) and rats (5 males and 5 females) were exposed to 4 (4.5+/-0.6) and 40 (40.6+/-3.0) ppm ETBE for 4 h in a dynamic exposure system. Urine samples from rats and humans were collected for 72 h at 6-h intervals, and blood samples were taken in regular intervals for 48 h. In urine, ETBE and the ETBE-metabolites tert-butanol (t-butanol), 2-methyl-1,2-propane diol, and 2-hydroxyisobutyrate were quantified; ETBE and t-butanol were determined in blood samples. After the end of the exposure period to inhalation of 40-ppm ETBE, blood concentrations of ETBE were found at 5.3+/-1.2 microM in rats and 12.1+/-4.0 microM in humans. The ETBE blood concentrations, after inhalation of 4-ppm ETBE, were 1.0+/-0.7 microM in rats and 1.3+/-0.7 microM in humans. ETBE was rapidly cleared from blood. After the end of the 40-ppm ETBE exposure period, the blood concentrations of t-butanol were 13.9+/-2.2 microM in humans and 21.7+/-4.9 microM in rats. After 4-ppm ETBE exposure, blood concentrations of t-butanol were 1.8+/-0.2 microM in humans and 5.7+/-0.8 microM in rats. t-Butanol was cleared from human blood with a half-life of 9.8+/-1.4 h in humans after 40-ppm ETBE exposure. In urine samples from controls and in samples collected from the volunteers and rats before the exposure, low concentrations of t-butanol, 2-methyl-1,2-propane diol, and 2-hydroxyisobutyrate were present. In the urine of both humans and rats exposed to ETBE, the concentrations of these compounds were significantly increased. 2-Hydroxy-isobutyrate was recovered in urine as the major excretory product formed from ETBE; t-butanol and 2-methyl-1,2-propane diol were minor metabolites. All metabolites of ETBE excreted with urine were rapidly eliminated in both species after the end of the ETBE exposure. Excretion half-lives for the different urinary metabolites of ETBE were between 10.2 and 28.3 h in humans and 2.6 and 4.7 h in rats. The obtained data indicate that ETBE biotransformation and excretion are similar for rats and humans, and that ETBE and its metabolites are rapidly excreted by both species. Between 41 and 53% of the ETBE retained after the end of the exposure was recovered as metabolites in the urine of both humans and rats.
Methyl tert-butyl ether (MTBE) is widely used as an additive to gasoline, to increase oxygen content and reduce tailpipe emission of pollutants. Widespread human exposure to MTBE may occur due to leakage of gasoline storage tanks and a high stability and mobility of MTBE in ground water. To compare disposition of MTBE after different routes of exposure, its biotransformation was studied in humans after oral administration in water. Human volunteers (3 males and 3 females, identical individuals, exposures were performed 4 weeks apart) were exposed to 5 and 15 mg 13C-MTBE dissolved in 100 ml of water. Urine samples from the volunteers were collected for 96 h after administration in 6-h intervals and blood samples were taken in intervals for 24 h. In urine, MTBE and the MTBE-metabolites tert-butanol (t-butanol), 2-methyl-1,2-propane diol, and 2-hydroxyisobutyrate were quantified, MTBE and t-butanol were determined in blood samples and in exhaled air in a limited study of 3 male volunteers given 15 mg MTBE in 100 ml of water. MTBE blood concentrations were 0.69 +/- 0.25 microM after 15 mg MTBE and 0.10 +/- 0.03 microM after 5 mg MTBE. MTBE was rapidly cleared from blood with terminal half-lives of 3.7 +/- 0.9 h (15 mg MTBE) and 8.1 +/- 3.0 h (5 mg MTBE). The blood concentrations of t-butanol were 1.82 +/- 0.63 microM after 15 mg MTBE and 0.45 +/- 0.13 microM after 5 mg MTBE. Approximately 30% of the MTBE dose was cleared by exhalation as unchanged MTBE and as t-butanol. MTBE exhalation was rapid and maximal MTBE concentrations (100 nmol/l) in exhaled air were achieved within 10-20 min. Clearance of MTBE by exhalation paralleled clearance of MTBE from blood. T-butanol was cleared from blood with half-lives of 8.5 +/- 2.4 h (15 mg MTBE) and 8.1 +/- 1.6 h (5 mg MTBE). In urine samples, 2-hydroxyisobutyrate was recovered as major excretory product, t-butanol and 2-methyl-1,2-propane diol were minor metabolites. Elimination half-lives for the different urinary metabolites of MTBE were between 7.7 and 17.8 h. Approximately 50% of the administered MTBE was recovered in urine of the volunteers after both exposures, another 30% was recovered in exhaled air as unchanged MTBE and t-butanol. The obtained data indicate that MTBE-biotransformation and excretion after oral exposure is similar to inhalation exposure and suggest the absence of a significant first-pass metabolism of MTBE in the liver after oral administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.