The liver-expressed microRNA-122 (miR-122) is essential for hepatitis C virus (HCV) RNA accumulation in cultured liver cells, but its potential as a target for antiviral intervention has not been assessed. Here, we show that treatment of chronically infected chimpanzees with a locked nucleic acid (LNA)-modified oligonucleotide (SPC3649) complementary to miR-122 leads to long-lasting suppression of HCV viremia with no evidence for viral resistance or side effects in the treated animals. Furthermore, transcriptome and histological analyses of liver biopsies demonstrated derepression of target mRNAs with miR-122 seed sites, down-regulation of interferon-regulated genes (IRGs) and improvement of HCV-induced liver pathology. The prolonged virological response to SPC3649 treatment without HCV rebound holds promise of a new antiviral therapy with a high barrier to resistance.
MicroRNA 122 (miR-122) is liver specific, fine-tunes lipid metabolism, and is required for hepatitis C virus (HCV) abundance. Miravirsen, an oligonucleotide with locked nucleic acid, binds to miR-122, potently inhibiting its activity. We aimed at determining the safety of the miR-122 antagonism in vivo in 6 to 10 cynomolgus monkeys/group intravenously treated with a range of dose levels twice weekly for 4 weeks. Survival, body weights, clinical signs, and cardiovascular and ophthalmologic parameters were unaffected. Anticipated hypolipidemia due to the inhibition of miR-122 was observed in all treated animals. Only the highest dose level produced distinct transient prolongations of clotting times, slight alternative complement pathway activation, and a reversible increase of hepatic transaminases. Distribution half-life was 10-20 minutes, and accumulation was mainly in the kidney and liver with slow elimination. Microscopic examinations revealed granulated Kupffer cells and lymph node macrophages, cytoplasmic vacuolation in proximal renal tubules, and hepatocytes. The granules were most likely phagolysosomes containing miravirsen. A slightly increased incidence of hepatocyte apoptosis was observed in some monkeys given the highest dose; otherwise, there was no evidence of treatment-related degenerative changes in any organ. In conclusion, the maximal inhibition of miR-122 was associated with limited phenotypic changes, indicating that the clinical assessment of miravirsen as host factor antagonist for treatment of HCV infections is warranted.
After embolization, physical therapy improved fine motor performance and D-amph accelerated rehabilitation of cognitive performance as observed in the rats of the THERAPY and D-AMPH groups. As a result of the administration of a high dose of D-amph, the rats of the D-AMPH + THERAPY combination group failed to engage in physical therapy during D-amph intoxication, thereby limiting any promotion of rehabilitation by combining physical therapy and D-amph.
We aimed at investigating a new model of mild focal cerebral ischemia in rats with repeated, noninvasive magnetic resonance scanning combined with histology. Magnetic resonance imaging yielded information about infarct development enabling us to test the putative growth of the infarct over time. The effect of local temperature at the occlusion site in this model was furthermore tested. Thirty-three Wistar rats were subjected to 30 min of simultaneous common carotid artery and distal middle cerebral artery occlusion or sham treatment. Animals were magnetic resonance-scanned repeatedly between day one and day 14 after surgery, then sacrificed, and paraffin brain sections stained. All animals scanned 24 h after reperfusion showed an area of edema in the affected cortex, which later was identified as an infarct. Animals with a temperature of 33.9 +/- 1.5 degrees C at the MCA site (hypothermic) showed smaller infarcts (14.4 +/- 10 mm3) than animals with normothermic local temperature (36.7 +/- 0.2 degrees C, 57.7 +/- 26.4 mm3). Infarct size was maximal on day 3 after ischemia but decreased as edema subsided. Infarct volumes from histology and magnetic resonance imaging correlated well. The model reproducibly yielded cortical infarcts, which did not grow after edema had subsided. Local temperature had a considerable effect on final infarct size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.