Row configuration has a large influence on the intensity of species interactions in intercrops. Row configuration affects how many crop rows interact with the same species and how many rows interact with the other species, shaping the expression of plasticity, resource capture, and growth. This study aims to determine how row configuration influences radiation interception and productivity in wheat-maize intercropping under western European growing conditions. Field experiments with different row configurations were carried out in 2013 and 2014 in the Netherlands. We compared seven treatments, comprising sole crops of wheat and maize (SW and SM), a replacement intercrop (6:2WM), skip-row designs (6:0WM, 0:2WM) and add-row designs (6:3WM, 8:2WM). We determined leaf area and biomass dynamics over time, and developed a simple geometry-based model to estimate light capture in these different row configurations. The model was tested with light measurements in the field. Crop radiation use efficiency (RUE) was estimated by linear regression of aboveground biomass on the calculated cumulative intercepted light (photosynthetically active radiation-PAR). This study showed that: 1) wheat-maize intercropping had significantly higher PAR interception than sole wheat in 2013 and 2014, and sole maize in 2013, but not in 2014; 2) intercropping significantly increased RUE of wheat, whereas it significantly decreased RUE of maize; 3) both light interception and light use efficiency changed with planting configuration. Thus we showed that the row configuration of the intercrop affected light interception as well as light use efficiency by modulating the strength of competitive and compensatory interactions within and between crop species.
Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Im Abschlußbericht (1992) der Bund-Länder-Arbeitsgruppe "Bibliothekswesen" liest nran folgende kritische Bemeri
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.