It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging.
a b s t r a c tRecent research using magnetic resonance imaging has documented changes in the adult human brain's grey matter structure induced by alterations in experiential demands. We review this research and relate it to models of brain plasticity from related strands of research, such as work on animal models. This allows us to generate recommendations and predictions for future research that may advance the understanding of the function, sequential progression, and microstructural nature of experience-dependent changes in regional brain volumes. Informed by recent evidence on adult age differences in structural brain plasticity, we show how understanding learning-related changes in human brain structure can expand our knowledge about adult development and aging. We hope that this review will promote research on the mechanisms regulating experience-dependent structural plasticity of the adult human brain.
Research on human brain changes during skill acquisition has revealed brain volume expansion in task-relevant areas. However, the large number of skills that humans acquire during ontogeny militates against plasticity as a perpetual process of volume growth. Building on animal models and available theories, we promote the expansion-renormalization model for plastic changes in humans. The model predicts an initial increase of gray matter structure, potentially reflecting growth of neural resources like neurons, synapses, and glial cells, which is followed by a selection process operating on this new tissue leading to a complete or partial return to baseline of the overall volume after selection has ended. The model sheds new light on available evidence and current debates and fosters the search for mechanistic explanations.
We compared hippocampal volume measures obtained by manual tracing to automatic segmentation with FreeSurfer in 44 younger (20-30 years) and 47 older (60-70 years) adults, each measured with magnetic resonance imaging (MRI) over three successive time points, separated by four months. Retest correlations over time were very high for both manual and FreeSurfer segmentations. With FreeSurfer, correlations over time were significantly lower in the older than in the younger age group, which was not the case with manual segmentation. Pearson correlations between manual and FreeSurfer estimates were sufficiently high, numerically even higher in the younger group, whereas intra-class correlation coefficient (ICC) estimates were lower in the younger than in the older group. FreeSurfer yielded higher volume estimates than manual segmentation, particularly in the younger age group. Importantly, FreeSurfer consistently overestimated hippocampal volumes independently of manually assessed volume in the younger age group, but overestimated larger volumes in the older age group to a less extent, introducing a systematic age bias in the data. Age differences in hippocampal volumes were significant with FreeSurfer, but not with manual tracing. Manual tracing resulted in a significant difference between left and right hippocampus (right > left), whereas this asymmetry Additional Supporting Information may be found in the online version of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.