Plant pollens are an important source of environmental antigens that stimulate allergic responses. In addition to acting as vehicles for foreign protein antigens, they contain lipids that incorporate saturated and unsaturated fatty acids, which are necessary in the reproduction of higher plants. The CD1 family of nonpolymorphic major histocompatibility complex–related molecules is highly conserved in mammals, and has been shown to present microbial and self lipids to T cells. Here, we provide evidence that pollen lipids may be recognized as antigens by human T cells through a CD1-dependent pathway. Among phospholipids extracted from cypress grains, phosphatidyl-choline and phosphatidyl-ethanolamine were able to stimulate the proliferation of T cells from cypress-sensitive subjects. Recognition of phospholipids involved multiple cell types, mostly CD4+ T cell receptor for antigen (TCR)αβ+, some CD4−CD8− TCRγδ+, but rarely Vα24i
+ natural killer–T cells, and required CD1a+ and CD1d+ antigen presenting cell. The responding T cells secreted both interleukin (IL)-4 and interferon-γ, in some cases IL-10 and transforming growth factor-β, and could provide help for immunoglobulin E (IgE) production. Responses to pollen phospholipids were maximally evident in blood samples obtained from allergic subjects during pollinating season, uniformly absent in Mycobacterium tuberculosis–exposed health care workers, but occasionally seen in nonallergic subjects. Finally, allergic, but not normal subjects, displayed circulating specific IgE and cutaneous weal and flare reactions to phospholipids.
γδ T cells are present in the mucosal intestinal epithelia and secrete factors necessary to maintain tissue integrity. Ags recognized by these cells are poorly defined, although in mice non-classical MHC class I molecules have been implicated. Since MHC class I-like CD1 receptors are widely expressed at the surface of epithelial and dendritic intestinal cells and have the capacity to present lipid Ags to T cells, we hypothesized that these molecules might present autologous and/or exogenous phospholipids to intestinal γδ T lymphocytes. Intraepithelial T lymphocytes from normal human duodenal mucosal biopsies were cloned and exposed to natural and synthetic phospholipids using CD1a-, CD1b-, CD1c- or CD1d-transfected C1R lymphoblastoid or HeLa cell lines as APCs. Their cytolytic properties and regulatory cytokine secretion were also examined. Most clones obtained from duodenal mucosa (up to 70%) were TCRαβ+, and either CD4+ or CD8+, whereas 20% were CD4−CD8− (6 clones) or TCRγδ+ (12 clones). A relevant percentage (up to 66%) of TCRγδ+ but few (<5%) TCRαβ+ T cell clones responded to synthetic and/or natural phospholipids presented by CD1 molecules, as measured by both [3H]thymidine incorporation and IL-4 release assays. A Th1-like cytolytic and functional activity along with the ability to secrete regulatory cytokines was observed in most phospholipid-specific γδ T cell clones. Thus, a substantial percentage of TCRγδ+ but few TCRαβ+ from human duodenal mucosa recognize exogenous phospholipids in a CD1-restricted fashion. This adaptive response could contribute to mucosal homeostasis, but could also favor the emergence of inflammatory or allergic intestinal diseases.
Allergen-specific, steroid-sensitive gamma delta T cells may be one of the cellular components involved in the airway inflammation that characterizes allergic bronchial asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.