Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
On the basis of previous experimental evidence, it is known that the auditory thalamus (AT), the dorsal hippocampus (DH), the basolateral amygdala (BLA), and the perirhinal cortex (PC) are involved in the mnemonic processing of conditioned freezing. In particular, BLA and PC appear to be involved both in conditioned stimulus (CS) and context conditioned freezing. Through AT, the auditory CS is sent to other sites, whereas DH is involved in context conditioning. Nevertheless, the existing evidence does not make it possible to assess AT, DH, BLA, and PC involvement during the consolidation phase of conditioned freezing. To address this question, fully reversible tetrodotoxin (TTX) inactivation was performed on adult male Wistar rats having undergone CS and context fear training. Anesthetized animals were injected stereotaxically with TTX (either 5 or 10 ng in 0.5 or 1.0 l of saline, according to site dimensions) at increasing post-acquisition delays. Context and CS freezing durations were measured during retention testing, always performed 48 and 72 hr after TTX administration. The results showed that AT inactivation does not disrupt consolidation of either contextual or auditory fear memories. In contrast, inactivation of the other three structures disrupted consolidation. For the DH, this disruption was specific to contextual cues and only occurred when inactivation was performed early (up to 1.5 hr) after training. The BLA and PC were shown to be involved in the consolidation of both contextual and auditory fear. Their involvement persisted for longer periods of time (2 d for BLA and 8 d for PC). These findings provide information to build a temporal profile for the post-training processing of fear memories in structures known to be important for this form of learning. The results are discussed in relation to previous studies on conditioned freezing and other aversive conditioned response neural correlates.
STUDY QUESTION How is the semen quality of sexually active men following recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection? SUMMARY ANSWER Twenty-five percent of the men with recent SARS-Cov-2 infections and proven healing were oligo-crypto-azoospermic, despite the absence of virus RNA in semen. WHAT IS KNOWN ALREADY The presence of SARS-CoV-2 in human semen and its role in virus contagion and semen quality after recovery from coronavirus disease 2019 (COVID-19) is still unclear. So far, studies evaluating semen quality and the occurrence of SARS-CoV-2 in semen of infected or proven recovered men are scarce and included a limited number of participants. STUDY DESIGN, SIZE, DURATION A prospective cross-sectional study on 43 sexually active men who were known to have recovered from SARS-CoV2 was performed. Four biological fluid samples, namely saliva, pre-ejaculation urine, semen and post-ejaculation urine, were tested for the SARS-CoV-2 genome. Female partners were retested if any specimen was found to be SARS-CoV-2 positive. Routine semen analysis and quantification of semen leukocytes and interleukin-8 (IL-8) levels were performed. PARTICIPANTS/MATERIALS, SETTING, METHODS Questionnaires including International Index of Erectile Function and Male Sexual Health Questionnaire Short Form were administered to all subjects. The occurrence of virus RNA was evaluated in all the biological fluids collected by RT-PCR. Semen parameters were evaluated according to the World Health Organization manual edition V. Semen IL-8 levels were evaluated by a two-step ELISA method. MAIN RESULTS AND THE ROLE OF CHANCE After recovery from COVID-19, 25% of the men studied were oligo-crypto-azoospermic. Of the 11 men with semen impairment, eight were azoospermic and three were oligospermic. A total of 33 patients (76.7%) showed pathological levels of IL-8 in semen. Oligo-crypto-azoospermia was significantly related to COVID-19 severity (p < 0.001). Three patients (7%) tested positive for at least one sample (one saliva; one pre-ejaculation urine; one semen and one post-ejaculation urine), so the next day new nasopharyngeal swabs were collected. The results from these three patients and their partners were all negative for SARS-CoV-2. LIMITATIONS, REASONS FOR CAUTION Although crypto-azoospermia was found in a high percentage of men who had recovered from COVID-19, clearly exceeding the percentage found in the general population, the previous semen quality of these men was unknown, nor is it known whether a recovery of testicular function was occurring. The low number of enrolled patients may limit the statistical power of study. WIDER IMPLICATIONS OF THE FINDINGS SARS-CoV-2 can be detected in saliva, urine and semen in a small percentage of men who recovered from COVID-19. One-quarter of men who recovered from COVID-19 demonstrated oligo-crypto-azoospermia indicating that an assessment of semen quality should be recommended for men of reproductive age who are affected by COVID-19. STUDY FUNDING/COMPETING INTEREST(S) None TRIAL REGISTRATION NUMBER n/a
Some cerebellar structures are known to be involved in the memorization of several conditioned responses. The role of the interpositus nucleus (IN) and the vermis (VE) in fear-conditioning consolidation was investigated by means of a combined behavioral and neurophysiological technique. The IN and VE were subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats that underwent acoustic conditioned stimulus (CS) and context fear training. TTX was injected in different groups of rats at increasing intervals after the acquisition session. Memory was assessed as conditioned freezing duration measured during retention testing, always performed 72 and 96 h after the stereotaxic TTX administration. This schedule ensures that there is no interference with normal cerebellar function during either the acquisition or the retrieval phase so that any amnesic effect may be due only to consolidation disruption. Our results show that IN functional integrity is necessary for acoustic CS fear response memory formation up to the 96-h after-acquisition delay. VE functional integrity was shown to be necessary for memory formation of both context (up to the 96-h after-acquisition delay) and acoustic CS (up to the 192-h after-acquisition delay) fear responses. The present findings help to elucidate the role of the cerebellum in memory consolidation and better define the neural circuits involved in fear memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.