The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.
Human α-Synuclein (αSyn) is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of αSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between αSyn's unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy–based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant αSyn. The conformational heterogeneity of monomeric αSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and “β-like” structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the “β-like” structures significantly increased in different conditions promoting the aggregation of αSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric αSyn conformers, positively correlated with conditions known to promote the formation of aggregates. A new tool is thus made available to test directly the influence of mutations and pharmacological strategies on the conformational equilibrium of monomeric αSyn.
Human alpha-synuclein is a 140-amino acid protein of unknown function abundantly expressed in the brain and found in Lewy bodies, a characteristic feature of Parkinson's disease. Alpha-synuclein is random in water under physiological conditions, but the first approximately 100 residues interact with SDS micelles or acidic phospholipid small unilamellar vesicles and adopt an ordered conformation. The rest of the molecule remains disordered in the bulk of the solution. The conformation of the N-terminal portion of the molecule in lipids was described as an extended helix [Ramakrishnan, M., Jensen, P. H., and Marsh, D. (2003) Biochemistry 42, 12919-12926], as two distinct alpha-helices interrupted by a two-residue break [Chandra, S., Chen, X., Rizo, J., Jahn, R., and Sudhof, T. C. (2003) J. Biol. Chem. 278, 15313-15318], or as a noncanonical conformation, the alpha11/3 helix [Bussell, R., Jr., and Eliezer, D. (2003) J. Mol. Biol. 329, 763-778]. We characterized the topology of the different regions of alpha-synuclein relative to the surface of SDS micelles using spin probe-induced broadening of NMR signals, (15)N relaxation measurements, and fluorescence spectroscopy. Our results support the presence of two N-terminal helices, positioned on the surface of the micelle and separated by a flexible stretch. The region of residues 61-95 of the protein also adopts a helical conformation, but it is partially embedded in the micelle. These results could shed some light on the role of the membrane on the aggregation process of alpha-synuclein.
In higher plants, the PsbS subunit of photosystem II (PSII) plays a crucial role in pH-and xanthophyll-dependent nonphotochemical quenching of excess absorbed light energy, thus contributing to the defense mechanism against photoinhibition. We determined the amino acid sequence of Zea mays PsbS and produced an antibody that recognizes with high specificity a region of the protein located in the stroma-exposed loop between the second and third putative helices. By means of this antiserum, the thylakoid membranes of various higher plant species revealed the presence of a 42-kDa protein band, indicating the formation of a dimer of the 21-kDa PsbS protein. Crosslinking experiments and immunoblotting with other antisera seem to exclude the formation of a heterodimer with other PSII protein components. The PsbS monomer͞dimer ratio in isolated thylakoid membranes was found to vary with luminal pH in a reversible manner, the monomer being the prevalent form at acidic and the dimer at alkaline pH. In intact chloroplasts and whole plants, dimer-to-monomer conversion is reversibly induced by light, known to cause luminal acidification. Sucrose-gradient centrifugation revealed a prevalent association of the PsbS monomer and dimer with light-harvesting complex and PSII core complexes, respectively. The finding of the existence of a light-induced change in the quaternary structure of the PsbS subunit may contribute to understanding the mechanism of PsbS action during nonphotochemical quenching.
The resistance of maize plants to cold stress has been associated with the appearance of a new chlorophyll a/b binding protein in the thylakoid membrane following chilling treatment in the light. The cold-induced protein has been isolated, characterized by amino acid sequencing, and pulse labeled with radioactive precursors, showing that it is the product of post-translational modification by phosphorylation of the minor chlorophyll a/b protein CP29 rather than the product of a cold-regulated gene or an unprocessed CP29 precursor. We show here that the CP29 kinase activity displays unique characteristics differing from previously described thylakoid kinases and is regulated by the redox state of a quinonic site. Finally, we show that maize plants unable to perform phosphorylation have enhanced sensitivity to cold-induced photoinhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.