We consider the isentropic compressible Euler system in 2 space dimensions with pressure law p(\rho)=\rho^2 and we show the existence of classical Riemann data, i.e. pure jump discontinuities across a line, for which there are infinitely many admissible bounded weak solutions (bounded away from the void). We also show that some of these Riemann data are generated by a 1-dimensional compression wave: our theorem leads therefore to Lipschitz initial data for which there are infinitely many global bounded admissible weak solutions
We consider entropy solutions to the Cauchy problem for the isentropic compressible Euler equations in the spatially periodic case. In more than one space dimension, the methods developed by De Lellis-Szekelyhidi enable us to show here failure of uniqueness on a finite time-interval for entropy solutions starting from any continuously differentiable initial density and suitably constructed bounded initial linear momenta
In this paper we extend and complement the results in Chiodaroli et al. (Global ill-posedness of the isentropic system of gas dynamics, 2014) on the well-posedness issue for weak solutions of the compressible isentropic Euler system in 2 space dimensions with pressure law p(\rho) = \rho^\gamma, \gamma\geq 1. First we show that every Riemann problem whose one-dimensional self-similar solution consists of two shocks admits also infinitely many two-dimensional admissible bounded weak solutions (not containing vacuum) generated by the method of De Lellis and Székelyhidi. Moreover we prove that for some of these Riemann problems and for 1\leq\gamma<3 such solutions have a greater energy dissipation rate than the self-similar solution emanating from the same Riemann data. We therefore show that the maximal dissipation criterion proposed by Dafermos does not favour the classical self-similar solutions
We consider the weak solutions to the Euler-Fourier system describing the motion of a compressible heat conducting gas. Employing the method of convex integration, we show that the problem admits infinitely many global-in-time weak solutions for any choice of smooth initial data. We also show that for any initial distribution of the density and temperature, there exists an initial velocity such that the associated initial-value problem possesses infinitely many solutions that conserve the total energy.
In this paper we study the problem of energy conservation for the solutions of the initial boundary value problem associated to the 3D Navier-Stokes equations, with Dirichlet boundary conditions. First, we consider Leray-Hopf weak solutions and we prove some new criteria, involving the gradient of the velocity. Next, we compare them with the existing literature in scaling invariant spaces and with the Onsager conjecture.Then, we consider the problem of energy conservation for very-weak solutions, proving energy equality for distributional solutions belonging to the so-called Shinbrot class. A possible explanation of the role of this classical class of solutions, which is not scaling invariant, is also given.MSC 2010 35Q30, 35D30, 76D07
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.