Introduction. Multidisciplinary rehabilitation interventions are considered to be a need for children with acquired brain injury (ABI), in order to remediate the important sequelae and promote adjustment. Technology-based treatments represent a promising field inside the rehabilitation area, as they allow delivering interventions in ecological settings and creating amusing exercises that may favor engagement. In this work, we present an overview of remote technology-based training programs (TP) addressing cognitive and behavioral issues delivered to children with ABI and complement it with the results of a meta-analytic exploration. Evidence Acquisition. We performed the review process between January and February 2019. 32 studies were included in the review, of which 14 were further selected to be included in the meta-analysis on TP efficacy. Evidence Synthesis. Based on the review process, the majority of TP addressing cognitive issues and all TP focusing on behavioral issues were found to be effective. Two meta-analytic models examining the means of either cognitive TP outcomes or behavioral TP outcomes as input outcome yielded a nonsignificant effect size for cognitive TP and a low-moderate effect size for behavioral TP. Additional models on outcomes reflecting the greatest beneficial effects of TP yielded significant moderate effect sizes for both types of TP. Nevertheless, consistent methodological heterogeneity was observed, pointing to cautious interpretation of findings. A subgroup analysis on visuospatial skill outcomes showed a smaller yet significant effect size of cognitive TP, with low heterogeneity, providing a more reliable estimation of overall cognitive TP effects. Conclusions. Promising results on remote cognitive and behavioral TP efficacy emerged both at the review process and at the meta-analytic investigation. Nevertheless, the high heterogeneity that emerged across studies prevents us from drawing definite conclusions. Further research is needed to identify whether specific training characteristics and population subgroups are more likely to be associated with greater training efficacy.
The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners' tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan.
Congenital or acquired cerebellum alterations are associated with a complex pattern of motor, cognitive and social disorders. These disturbances may reflect the involvement of the cerebellum in generating and updating the internal models that subserve-the prediction of sensory events. Here, we tested whether the cerebellar involvement in using contextual expectations to interpret ambiguous sensory sceneries is specific for social actions or also extends to physical events. We applied anodic, cathodic and sham cerebellar transcranial Direct Current Stimulation (ctDCS) to modulate the performance of an adult sample in two tasks requiring the prediction of social actions or moving shapes. For both tasks, in an earlier implicit-learning phase (familiarization), we manipulated the probability of co-occurrence between a particular action/shape and contextual elements, which could provide either strongly or moderately informative expectations. The use of these expectations was then tested when participants had to predict the unfolding of temporally occluded videos, in situations of perceptual uncertainty (testing). Results showed that in the testing, but not in the familiarization phase, cathodic as compared to anodic and sham ctDCS hindered participants' sensitivity in predicting actions embedded in strongly, but not moderately, informative contexts. Conversely, anodic as compared to sham ctDCS boosted the prediction of actions embedded in moderately, but not strongly, informative contexts. We observed no ctDCS effects for the shape prediction task, thus pointing to a specific involvement of the cerebellum in forming expectations related to social events. Our results encourage the exploration of rehabilitative effects of ctDCS in patients with social perception deficits.
Interpersonal dynamics may play a crucial role in the perpetuation of stereotypes. In an experimental study, participants interacted with a confederate who provided either stereotypeconsistent or stereotype-inconsistent descriptions about the elderly. Based on the assumption that mimicry represents a social glue that fosters interpersonal liking and affiliation, we assessed the extent to which participants mimicked the nonverbal behaviors of the confederate as a function of the stereotypicality of the descriptions. Results showed that nonconscious mimicry was more likely when the speaker relied on stereotypes rather than on stereotype-inconsistent information. In Study 2 the effect was replicated in relation to national stereotypes. This finding indicates that stereotypers are faced with subtle nonverbal cues from the audience that can retroactively reinforce their behaviors and thus make stereotype dismissal so difficult to be achieved. ACCEPTED MANUSCRIPTMimicking stereotypers 3The stereotyper and the chameleon:The effects of stereotype use on perceivers' mimicry Stereotypes are very resistant to change. Indeed, intraindividual cognitive processes tend to selectively enhance the encoding and memory for stereotype-consistent information (see Fiske, 1998), and interpersonal communication processes tend to favor stereotype-consistent information (Lyons & Kashima, 2003;Ruscher, 1998; see Kashima, Klein, & Clark, 2007, for a review). For instance, when a story is transmitted through communication chains, it rapidly undergoes very specific transformation such that stereotype-consistent information is retained whereas stereotypeinconsistent information tends to be omitted (Lyons & Kashima, 2001. In this way, recipients of communication are finally left with biased descriptions of persons and events. In addition, stereotype-consistent and -inconsistent information is transmitted at different levels of abstraction, and the use of abstract language in the case of stereotypical information further conveys the idea that stereotypes do generalize across situations and group members (Wigboldus, Semin, &
Observing others’ actions desynchronizes electroencephalographic (EEG) rhythms and modulates corticospinal excitability as assessed by transcranial magnetic stimulation (TMS). However, it remains unclear if these measures reflect similar neurofunctional mechanisms at the individual level. In the present study, a within-subject experiment was designed to assess these two neurophysiological indexes and to quantify their mutual correlation. Participants observed reach-to-grasp actions directed towards a small (precision grip) or a large object (power grip). We focused on two specific time points for both EEG and TMS. The first time point (t1) coincided with the maximum hand aperture, i.e. the moment at which a significant modulation of corticospinal excitability is expected. The second (t2), coincided with the EEG resynchronization occurring at the end of the action, i.e. the moment at which a hypothetic minimum for action observation effect is expected. Results showed a Mu rhythm bilateral desynchronization at t1 with differential resynchronization at t2 in the two hemispheres. Beta rhythm was more desynchronized in the left hemisphere at both time points. These EEG differences, however, were not influenced by grip type. Conversely, motor potentials evoked by TMS in an intrinsic hand muscle revealed an interaction effect of grip and time. No significant correlations between Mu/Beta rhythms and motor evoked potentials were found. These findings are discussed considering the spatial and temporal resolution of the two investigated techniques and argue over two alternative explanations: i. each technique provides different measures of the same process or ii. they describe complementary features of the action observation network in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.