Grape pomace (GP), is the main winemaking by-product and could represent a valuable functional food ingredient being a source of bioactive compounds, like polyphenols. Polyphenols prevent many non-communicable diseases and could contrast the oxidation reaction in foods. However, the high content in polyunsaturated fatty acid, the described pro-oxidant potential action of some polyphenols and the complex interactions with other components of matrices during food processing must be considered. Indeed, all these factors could promote oxidative reactions and require focused and specific assay. The aims of this study were to evaluate the effects of GP powder (GPP) addition (at 0%, 5% and 10% concentrations) in breadsticks formulations both on the antioxidant activity at room temperature during storage and on the shelf-life by the OXITEST predictive approach. GPP fortification increased the total polyphenols content and the antioxidant activities of breadsticks. FRAP reduced during the first two days of storage at room temperature, TPC increased during the 75 days, while ABTS showed a slight progressive decrease. However, GP negatively influenced OXITEST estimated shelf-life of breadsticks, incrementing the oxidation rate. In conclusion, even if GP fortification of breadsticks could improve the nutritional value of the products, the increased commercial perishability represents a drawback that must be considered.
Trub is a brewing by-product rich in proteins and fibers. We used trub, after a debittering step, at 5, 10, and 15 g/100 g (PT5, PT10, and PT15, respectively) to fortify durum wheat fresh pasta. Technological and physical–chemical properties, in vitro digestibility, and sensorial characteristics of fortified pasta were determined. The technological aspects of the products were peculiar, suggesting the existence of complex interactions between the gluten network and starch with debittered trub powder. The fortified pasta samples showed a lower glucose release than the control at the end of in vitro starch hydrolysis. Furthermore, in vitro protein digestion rose only in PT15. PT5 and PT10 samples overcame the sensory acceptability threshold of 5, while PT15 showed the lowest acceptability. Debittered trub represents a suitable ingredient in fortified fresh pasta formulation with an up to 10% substitution level without compromising the quality and sensory characteristics of the final product.
Bread is one of the most widely embraced food products and is highly accepted by consumers. Despite being rich in complex carbohydrates (i.e., starch), bread is generally poor in other micro- and macronutrients. Rising consumer demand for healthier food has resulted in the growth of studies focused on bread fortification with bioactive ingredients (i.e., vitamins, prebiotics, and vegetable extracts). However, the baking process leads to the reduction (or even lessening) of the added substance. In addition, the direct inclusion of bioactive compounds and additives in bread has other limitations, such as adverse effects on sensory characteristics and undesirable interaction with other food ingredients. Encapsulation allows for overcoming these drawbacks and at the same time improves the overall quality and shelf-life of bread by controlling the release, protection, and uniform distribution of these compounds. In the last ten years, several studies have shown that including micro/nano-encapsulated bioactive substances instead of free compounds allows for the enrichment or fortification of bread, which can be achieved without negatively impacting its physicochemical and textural properties. This review aims to identify and highlight useful applications in the production of new functional bread through encapsulation technology, summarizing the heath benefit and the effect of microcapsule inclusion in dough and bread from a technological and sensory point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.