Let p be a prime number and q = p m , with m ≥ 1 if p = 2, 3 and m > 1 otherwise. Let Ω be any non-trivial twist for the complex group algebra of PSL2(q) arising from a 2-cocycle on an abelian subgroup of PSL2(q). We show that the twisted Hopf algebra (CPSL2(q))Ω does not admit a Hopf order over any number ring. The same conclusion is proved for the Suzuki group 2 B2(q) and SL3(p) when the twist stems from an abelian p-subgroup. This supplies new families of complex semisimple (and simple) Hopf algebras that do not admit a Hopf order over any number ring. The strategy of the proof is formulated in a general framework that includes the finite simple groups of Lie type.As an application, we combine our results with two theorems of Thompson and Barry and Ward on minimal simple groups to establish that for any finite non-abelian simple group G there is a twist Ω for CG, arising from a 2-cocycle on an abelian subgroup of G, such that (CG)Ω does not admit a Hopf order over any number ring. This partially answers in the negative a question posed by Meir and the second author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.