Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.
PPARgamma is a nuclear receptor that has a dominant regulatory role in differentiation of cells of the adipose lineage, and has recently been shown to be expressed in the colon. We show here that PPARgamma is expressed at high levels in both well- and poorly-differentiated adenocarcinomas, in normal colonic mucosa and in human colon cancer cell lines. Ligand activation of this receptor in colon cancer cells causes a considerable reduction in linear and clonogenic growth, increased expression of carcinoembryonic antigen and the reversal of many gene expression events specifically associated with colon cancer. Transplantable tumors derived from human colon cancer cells show a significant reduction of growth when mice are treated with troglitazone, a PPARgamma ligand. These results indicate that the growth and differentiation of colon cancer cells can be modulated through PPARgamma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.