Abstract:In this paper a careful energy audit and an energy restoration of some historical buildings was performed. In particular, three cultural heritages buildings situated in the city of Matera in Southern Italy were analysed. To analyse these buildings, an integrated approach based on measurements in situ and on dynamic energy simulations was used. Then, some energy efficiency actions were performed, safeguarding the authenticity value of these structures. The thermal conductance, the indoor temperature and the energy consumption were measured in situ and then the numerical virtual model was created by the Energy Plus code (Energy Plus is free, open-source, and cross-platform developed by the U.S. Department of Energy's and Building Technologies Office) (U.S. Department of Energy's (DOE) Building Technologies Office (BTO), Washington, DC, USA). The numerical model was validated by using the Inequality Coefficient (IC) and then different parametric energy analyses were performed. The paper analysed different energy improvements and a techno-economic feasibility study was performed for each improvement. This analysis was conducted in dynamic regime by using the Energy-Plus code. In these buildings the thermal system improvements have a better payback time than envelope improvements. Two different thermal system improvements were analysed: the absorption heat pump with thermostatic valves and the compression heat pump with fan coil unit. Moreover, the replacement of present lighting with LED technologies has a payback time near one year.
The Sassi of Matera are a unique example in the world of rock settlements, developed from natural caves carved into the rock and molded into increasingly complex structures inside two large natural amphitheaters. Research focuses on the compatibility of the energy efficiency measures applied in Sassi buildings with the recent MiBACT guidelines on "Energy efficiency improvements in cultural heritage" and AiCARR guidelines on "Energy efficiency of historical buildings". The paper aims to analyze energy and environmental performance of different building typologies and monuments of the Sassi site
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.