We have developed an integrated microfluidic platform for producing 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) in continuous flow from a single bolus of radioactive isotope solution, with constant product yields achieved throughout the operation that were comparable to those reported for commercially available vessel-based synthesisers (40-80%). The system would allow researchers to obtain radiopharmaceuticals in a dose-on-demand setting within a few minutes. The flexible architecture of the platform, based on a modular design, can potentially be applied to the synthesis of other radiotracers that require a two-step synthetic approach, and may be adaptable to more complex synthetic routes by implementing additional modules. It can therefore be employed for standard synthesis protocols as well as for research and development of new radiopharmaceuticals.
Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.
Glass micromachining is a basic technology to achieve microfluidic networks for lab-on-a-chip applications. Among several methods to microstructure glass, the simplest and most widely applied is wet chemical etching (WE). However, accurate control of the reaction conditions to perform reproducible, fast and safe glass etching is not straightforward. Herein, microwave-assisted WE is demonstrated to intensify the glass etching action under safe working and finely monitored operative conditions and to produce smooth deep channels in short processing times with reduced underetching effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.