Saliva contains a complex mixture of proteins and peptides as well as fragments derived from these molecules. By RP 1 -HPLC-ESI-MS analysis of the acidic soluble fraction of human whole saliva we have identified in the chromatographic pattern more than 120 different proteins and naturally occurring peptides (1-6). Their characterization was performed by a variety of mass spectrometric techniques coupled with different enzymatic treatments and amino acid sequencing. The proteins and naturally occurring peptides belong to families of well characterized salivary proteins including Histatins, Statherin, acidic and basic proline-rich proteins (aPRP and bPRP), Cystatins, and Defensins (1-6). Two-dimensional gel electrophoresis has also been used by other researchers for analysis of salivary proteins and peptides, but this technique is not well suited for identification of small peptides as illustrated by the difficulty in identifying Histatins and the majority of bPRPs and bPRP fragments (7-9). However, knowledge of salivary proteins and peptides as well as their naturally occurFrom the ‡Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari,
The acidic-soluble protein content of human gingival crevicular fluid was analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC), and the eluent deriving from the chromatography separation was directly introduced into an ion-trap mass spectrometer through electrospray ionization (ESI-IT MS). By this technique the molecular weight of peptides/proteins was determined with a precision of approximately 1/10,000 amu. On the basis of the chromatographic behavior and the knowledge of the molecular mass value, some peptides and proteins soluble in acidic solution were unambiguously recognized. Besides high quantities of human serum albumin, alpha-defensins 1-4 and minor amounts of cystatin A, statherin, basic PB salivary peptide and other unidentified components were detected. The presence of alpha-defensins in gingival crevicular fluid is in agreement with their relevant contribution to protein composition deriving from granulocyte secretions. Other peptides and proteins abundant in human saliva, such as proline-rich proteins (PRPs) and histatins, were not detected in gingival crevicular fluid. Further investigations will be necessary to establish the origin of statherin and PB salivary peptide in gingival crevicular fluid.
Saliva is a body fluid of a unique composition devoted to protect the mouth cavity and the digestive tract. Our high performance liquid chromatography (HPLC)-electrospray ionization-MS analysis of the acidic soluble fraction of saliva from preterm human newborn surprisingly revealed more than 40 protein masses often undetected in adult saliva. We were able to identify the following proteins: stefin A and stefin B, S100A7 (two isoforms), S100A8, S100A9 (four isoforms), S100A11, S100A12, small proline-rich protein 3 (two isoforms), lysozyme C, thymosins  4 and  10 , antileukoproteinase, histone H1c, and ␣ and ␥ globins. The average mass value reported in international data banks was often incongruent with our experimental results mostly because of post-translational modifications of the proteins, e.g. acetylation of the N-terminal residue. A quantitative label-free MS analysis showed protein levels altered in relation to the postconceptional age and suggested coordinate and hierarchical functions for these proteins during development. In summary, this study shows for the first time that analysis of these proteins in saliva of preterm newborns might represent a noninvasive way to obtain precious information of the molecular mechanisms of development of human fetal oral structures. Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.003467, 1-14, 2011.Saliva is a body fluid of a very complex and specific composition devoted to the protection and well-being of the oral cavity and, because it is swallowed, of the digestive tract (1). Protection is ensured by organic and inorganic solutes and specific peptides and proteins, such as acidic and basic proline-rich proteins, ␣-amylases, salivary cystatins, histatins, and statherin (2-5). In a previous study (6), we have established that some salivary proteins and peptides reach the levels typically observed in the adult around 18 years of age. Encouraged by the noninvasive specimen collection, we explored the salivary protein composition of at-term and preterm newborns, in order to establish the starting point of the secretion of the proteins and peptides specific of saliva. Our first study (7) showed that acidic proline-rich proteins secretion started, although at very low levels, at 7 months of postconceptional age. At this age the level of phosphorylation of these proteins was low and it increased reaching a value comparable with that of adults at about one year of age, in concomitance with the beginning of deciduous dentition. Other deep differences between human and preterm saliva were however evident. Highly abundant protein masses detected in preterm saliva were undetectable (at the sensitivity level of our MS apparatus) or at very low level in adult saliva. In a previous study (8) we identified, by different MS approaches, thymosin  4 (T 4 ) and thymosin  10 (T 10 ) in preterm newborn saliva and established by immunohistochemistry their presence in fetal salivary glands. This finding let us to suppose that in preterm newborns these peptides derived from glan...
Proteomic platforms can be classified in bottom-up strategies, which analyze the sample after proteolytic digestion, and top-down strategies, which analyze the intact naturally occurring proteome. Bottom-up platforms are high-throughput because they can investigate a large number of proteins, regardless of their dimension. Nonetheless, information on post-translational modifications (PTMs) can be lost, especially those regarding naturally occurring cleavages and alternative splicing. Top-down platforms cannot cover vast proteomes, however, they can disclose subtle structural variations occurring during protein maturation and allow label-free relative quantifications in an unlimited number of samples. A repertoire of 256 masses belonging to naturally occurring proteins and peptides consistently detected by RP-HPLC-ESI-MS analysis of the acidic soluble fraction of human whole saliva is presented in this study. Of them, 233 have been identified, while 23 are still pending for the definitive characterization. The present review reports average and mono-isotopic masses of the peptides and proteins detected, RP-HPLC elution times, PTMs, origin and quali-quantitative variations observed in several physiological and pathological conditions. The information reported can be a reference for users of top-down RP-HPLC-ESI-MS proteomic platforms applied to the study of the human salivary proteome as well as of other human bodily fluids.
Physiological variability of the naturally occurring, human salivary secretory peptidome was studied as a function of age. The qualitative and quantitative changes occurring in the secretion of proteins/peptides specific to the oral cavity (i.e., basic salivary proline-rich proteins, salivary acidic proline-rich phosphoproteins, statherin, proline-rich peptide P-B, salivary cystatins, and histatins) were investigated by high-performance liquid chromatography-electrospray ionization-mass spectrometry in 67 subjects aged between 3 and 44 years. Subjects were divided into five age groups: group A, 8 donors, 3-5 years; group B, 11 donors, 6-9 years; group C, 20 donors, 10-12 years; group D, 15 donors, 13-17 years; group E, 13 donors, 24-44 years. Basic salivary proline-rich proteins, almost undetectable in the 3-5 and 6-9 years groups, reached salivary levels comparable to that of adults (24-44 years) around puberty. Levels of peptide P-D, basic peptide P-F, peptide P-H, peptide P-J (a new basic salivary proline-rich protein characterized in this study), and basic proline-rich peptide IB-1 were significantly higher in the 10-12-year-old group than in the 3-5-year-old group, whereas the increase of proline-rich peptide II-2 was significant only after the age of 12 years. The concentration of salivary acidic proline-rich phosphoproteins, histatin-3 1/24, histatin-3 1/25, and monophosphorylated and diphosphorylated cystatin S showed a minimum in the 6-9-year-old group. Finally, the histatin-1 concentration was significantly higher in the youngest subjects (3-5 years) than in the other groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.