Metal bioaccumulation and metallothionein (MT) expression were investigated in the gills and liver of the red-blooded Antarctic teleost Trematomus hansoni to evaluate the possibility for this species to face, with adequate physiological responses, an increase of copper and cadmium concentrations in its tissues. Specimens of this Antarctic fish were collected from Terra Nova Bay (Ross Sea) and used for a metal exposure experiment in controlled laboratory conditions. The two treatments led to a significant accumulation of both metals and increased gene transcription only for the MT-1. The biosynthesis of MTs was verified especially in specimens exposed to Cd, but most of these proteins were soon oxidized, probably because they were involved in cell protection against oxidative stress risk by scavenging reactive oxygen species. The obtained data highlighted the phenotypic plasticity of T. hansoni, a species that evolved in an environment characterized by naturally high concentrations of Cu and Cd, and maybe the possibility for the Antarctic fish to face the challenges of a world that is becoming more toxic every day.
In recent decades, the interest in PFAS has grown exponentially around the world, due to the toxic effects induced by these chemical compounds in humans, as well as in other animals and plants. However, current knowledge related to the antistress responses that organisms can express when exposed to these substances is still insufficient and, therefore, requires further investigation. The present study focuses on antioxidant responses in Squalius cephalus and Padogobius bonelli, exposed to significant levels of PFAS in an area of the Veneto Region subjected to a recent relevant pollution case. These two ubiquitous freshwater species were sampled in three rivers characterised by different concentrations of PFAS. Several biomarkers of oxidative stress were evaluated, and the results suggest that PFAS chronic exposure induces some physiological responses in the target species, at both cellular and tissue scales. The risk of oxidative stress seems to be kept under control by the antioxidant system by means of gene activation at the mitochondrial level. Moreover, the histological analysis suggests an interesting protective mechanism against damage to the protein component based on lipid vacuolisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.