As an interdisciplinary field of research, phenology is developing rapidly, and the contents of phenological research have become increasingly abundant. In addition, the potentiality of remote sensing technologies has largely contributed to the growth and complexity of this discipline, in terms of the scale of analysis, techniques of data processing, and a variety of topics. As a consequence, it is increasingly difficult for scientists to get a clear picture of remotely sensed phenology (rs+pheno) research. Bibliometric analysis is increasingly used for the study of a discipline and its conceptual dynamics. This review analyzed the last 40 years of publications in the rs+pheno field retrieved from the Scopus database; such publications were investigated by means of a text mining approach, both in terms of bibliographic and text data. Results demonstrated that rs+pheno research is exponentially growing through time; however, it is primarily considered a subset of remote sensing science rather than a branch of phenology. In this framework, in the last decade, agriculture is becoming more and more a standalone science in rs+pheno research, independently from other related topics, e.g., classification. On the contrary, forestry struggles to gain its thematic role in rs+pheno studies and remains strictly connected with climate change issues. Classification and mapping represent the major rs+pheno topic, together with the extraction and the analysis of phenological metrics, like the start of the growing season. To the contrary, forest ecophysiology, in terms of ecosystem respiration and net ecosystem exchange, results as the most relevant new topic, together with the use of the red edge band and SAR (Synthetic Aperture Radar) data in rs+pheno agricultural studies. Some niche emerging rs+pheno topics may be recognized in the ocean and arctic investigations linked to phytoplankton blooming and ice cover dynamics. The findings of this study might be applicable for planning and managing remotely sensed phenology research; scientists involved in such discipline might use this study as a reference to consider their research domain in a broader dynamical network.
The leaf area index (LAI) is a direct indicator of vegetation activity, and its relationship with the normalized difference vegetation index (NDVI) has been investigated in many research studies. Remote sensing makes available NDVI data over large areas, and researchers developed specific equations to derive the LAI from the NDVI, using empirical relationships grounded in field data collection. We conducted a literature search using “NDVI” AND “LAI” AND “crop” as the search string, focusing on the period 2017–2021. We reviewed the available equations to convert the NDVI into the LAI, aiming at (i) exploring the fields of application of an NDVI-based LAI, (ii) characterizing the mathematical relationships between the NDVI and LAI in the available equations, (iii) creating a software library with the retrieved methods, and (iv) releasing a publicly available software as a service, implementing these equations to foster their reuse by third parties. The literature search yielded 92 articles since 2017, where 139 equations were proposed. We analyzed the mathematical form of both the single equations and ensembles of the NDVI to LAI conversion methods, specific for crop, sensor, and biome. The characterization of the functions highlighted two main constraints when developing an NDVI-LAI conversion function: environmental conditions (i.e., water and light resource, land cover, and climate) and the availability of recurring data during the growing season. We found that the trend of an NDVI-LAI function is usually driven by the ecosystem water availability for the crop rather than by the crop type itself, as well as by the data availability; the data should be adequate in terms of the sample size and temporal resolution for reliably representing the phenomenon under investigation. Our study demonstrated that the choice of the NDVI-LAI equation (or ensemble of equations) should be driven by the trade-off between the scale of the investigation and data availability. The implementation of an extensible and reusable software library publicly queryable via API represents a valid mean to assist researchers in choosing the most suitable equations to perform an NDVI-LAI conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.