The maintenance of the differentiated hepatocyte phenotype and its specific physiological properties is known to depend on several factors, such as chemical signals, cell-cell and extracellular matrix molecular interactions, as well as the use of three-dimensional matrices. The entrapment of hepatocytes within Ca-alginate at high cell density and the culture under continuous flow favour the development of three-dimensional organization and promote expression of the differentiated hepatic phenotype. This system could represent an improvement in hepatocyte cultivation for basic studies of liver physiology and metabolism; it could also be applicable in toxicology, hepatocyte transplantation or development of bioartificial organs. This report describes the effect of alginate entrapment and culture in a bioreactor on hepatocyte aggregate formation, with particular attention to the re-establishment of cell polarity, cell junctions and three-dimensional re-organization of the cytoskeleton. Oxygen supply and cell oxygen consumption rate were monitored in order to evaluate possible changes in hepatocyte energy requirement. Our data show that after only 6 h of perfusion in the bioreactor, actin and cytokeratin localize along the adhesion areas of the plasma membrane, in which reconstituted bile canaliculi were also observed. Moreover, the presence of connexin at the level of joined membranes of neighbouring cells suggests the establishment of gap junctions between hepatocytes. After the first 30 min of perfusion the oxygen consumption rate remained constant throughout the experimental period.
We studied the effect of continuous medium flow on the viabilityand structural organization of hepatocytes high density entrapped inalginate gel beads in the first few hours after isolation.The metabolic energy status of the entrapped cells, monitored invivo by (31)P NMR spectroscopy, was stable during theexperimental time and a physiological redox ratio was reachedafter the first three hours of culture. The morphologicalanalysis revealed that the entrapped hepatocytes placed in a fixed-bed bioreactor under continuous flow showed a polyhedricalshape with numerous microvilli on cell surface and reconstitutedtight junctions as well as bile canalicular structures, closelyresembling those present in the liver.These results suggest that continuous flow allows the culture ofhepatocytes at very high cell density within a matrix withoutloss of viability and accelerates cellular tissue reconstructionat very short times after isolation. This type of culture couldrepresent a very useful model for physiological andtoxicological studies as well as a promising approach toward thedevelopment of a bioartificial hybrid support device in acuteliver failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.