Physical activity in patients with type 1 diabetes (T1DM) is hindered because of the high risk of glycemic imbalances. A recently proposed algorithm (named Ecres) estimates well enough the supplemental carbohydrates for exercises lasting one hour, but its performance for prolonged exercise requires validation. Nine T1DM patients (5M/4F; 35–65 years; HbA1c 54±13 mmol·mol-1) performed, under free-life conditions, a 3-h walk at 30% heart rate reserve while insulin concentrations, whole-body carbohydrate oxidation rates (determined by indirect calorimetry) and supplemental carbohydrates (93% sucrose), together with glycemia, were measured every 30 min. Data were subsequently compared with the corresponding values estimated by the algorithm. No significant difference was found between the estimated insulin concentrations and the laboratory-measured values (p = NS). Carbohydrates oxidation rate decreased significantly with time (from 0.84±0.31 to 0.53±0.24 g·min-1, respectively; p<0.001), being estimated well enough by the algorithm (p = NS). Estimated carbohydrates requirements were practically equal to the corresponding measured values (p = NS), the difference between the two quantities amounting to –1.0±6.1 g, independent of the elapsed exercise time (time effect, p = NS). Results confirm that Ecres provides a satisfactory estimate of the carbohydrates required to avoid glycemic imbalances during moderate intensity aerobic physical activity, opening the prospect of an intriguing method that could liberate patients from the fear of exercise-induced hypoglycemia.
Background: It has been shown that sex affects immunity, including cytokine production. Given that atherosclerosis is an inflammatory disease promoted by specific cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, we aimed at evaluating whether sex could affect the levels of these proatherogenic cytokines in a group of healthy adults. In this analysis, we also included other cytokines and peptides that have been implicated in atherosclerosis development and progression. Methods: A total of 104 healthy adults were recruited; we measured circulating levels of IL-1β, IL-6, TNF-α, angiotensins and angiotensin-converting enzyme-2 (ACE2), as well as osteoprotegerin and receptor activator of nuclear factor κB ligand (RANKL). Results: IL-1β, IL-6, and TNF-α were significantly higher in men as compared to women. They were all associated with testosterone and the testosterone/estradiol ratio. They remained significantly associated with sex (but not with hormones) after being tested for potential confounders. Conclusions: Sex seems to influence the levels of proatherogenic cytokines. This is consistent not only with sex differences in vulnerability to infections but also with the higher cardiovascular risk exhibited by the male gender as compared to the female gender. Nevertheless, this association is only partly explained by hormone levels.
Background: Ghrelin may exert positive effects on cardiac structure and function in heart failure (HF) patients. Methods: We assessed ghrelin levels in 266 dilated cardiomyopathy (DCM) patients and in 200 age, gender and body mass index (BMI) matched controls. Further, we evaluated the expression of ghrelin and growth hormone secretagogue-receptor (GHSR) in the myocardium of 41 DCM patients and in 11 controls. Results: DCM patients had significantly lower levels of total, acylated and unacylated ghrelin when compared to controls (p < 0.05 for all). In controls, we observed a negative correlation of ghrelin with age, male gender and BMI. These correlations were lost in the DCM group, except for male gender. Total ghrelin was higher in patients with more recent diagnosis when compared to patients with longer duration of the DCM (p = 0.033). Further, total ghrelin was higher in patients with lower left ventricular systolic function (<40% LVEF, vs. 40% ≤ LVEF < 49% vs. LVEF ≥ 50%: 480.8, vs. 429.7, vs. 329.5 pg/mL, respectively, p = 0.05). Ghrelin prepropeptide was expressed more in DCM patients than in controls (p = 0.0293) while GHSR was expressed less in DCM patients (p < 0.001). Furthermore, ghrelin showed an inverse correlation with its receptor (= −0.406, p = 0.009), and this receptor showed a significant inverse correlation with Interleukin-1 (= −0.422, p = 0.0103). Conclusion: DCM duration and severity are accompanied by alterations in the ghrelin–GHSR system.
Background: Acute myocardial infarction (AMI) survivors are at risk of major adverse cardiac events and their risk stratification is a prerequisite to tailored therapeutic approaches. Biomarkers could be of great utility in this setting. Methods: We sought to evaluate the utility of the combined assessment of Galectin 3 (Gal-3) and Galectin 3 binding protein (Gal-3bp) for post-AMI risk stratification in a large, consecutive population of AMI patients. The primary outcomes were: Recurrent angina/AMI and all-cause mortality at 12 months after the index event. Results: In total, 469 patients were included. The median Gal-3bp was 9.1 μg/mL (IQR 5.8–13.5 μg/mL), while median Gal-3 was 9.8 ng/mL (IQR 7.8–12.8 ng/mL). During the 12 month follow-up, 34 patients died and 41 had angina pectoris/reinfarction. Gal-3 was associated with all-cause mortality, while Gal-3bp correlated with the risk of angina/myocardial infarction even when corrected for other significant covariates. The final multivariable model for mortality prediction included patients’ age, left ventricular ejection fraction (LVEF), Gal-3, and renal function. The ROC curve estimated for this model has an area under the curve (AUC) of 0.84 (95%CI 0.78–0.9), which was similar to the area under the ROC curve obtained using the GRACE score 1-year mortality. Conclusions: The integrated assessment of Gal-3 and Gal-3bp could be helpful in risk stratification after AMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.