Insulin resistance and obesity are associated with a reduction of mitochondrial content in various tissues of mammals. Moreover, a reduced nitric oxide (NO) bioavailability impairs several cellular functions, including mitochondrial biogenesis and insulin-stimulated glucose uptake, two important mechanisms of body adaptation in response to physical exercise. Although these mechanisms have been thoroughly investigated in skeletal muscle and heart, few studies have focused on the effects of exercise on mitochondria and glucose metabolism in adipose tissue. In this study, we compared the in vivo effects of chronic exercise in subcutaneous adipose tissue of wild-type (WT) and endothelial NO synthase (eNOS) knockout (eNOS 2/2 ) mice after a swim training period. We then investigated the in vitro effects of NO on mouse 3T3-L1 and human subcutaneous adipose tissue-derived adipocytes after a chronic treatment with an NO donor: diethylenetriamine-NO (DETA-NO). We observed that swim training increases mitochondrial biogenesis, mitochondrial DNA content, and glucose uptake in subcutaneous adipose tissue of WT but not eNOS 2/2 mice. Furthermore, we observed that DETA-NO promotes mitochondrial biogenesis and elongation, glucose uptake, and GLUT4 translocation in cultured murine and human adipocytes. These results point to the crucial role of the eNOS-derived NO in the metabolic adaptation of subcutaneous adipose tissue to exercise training.Reduced mitochondrial content and/or activity is associated with impaired cell function in several diseases (1,2). In particular, it has been hypothesized that mitochondrial impairment may be involved in the pathogenesis of obesity and insulin resistance and their progression toward type 2 diabetes (3,4), even though the role of mitochondria in health and disease is still under discussion (5,6). At the same time, metabolic disorders are also associated with a reduction of endothelial nitric oxide synthase (eNOS) enzymatic activity (7,8); in fact, mice lacking the eNOS gene are considered a useful murine model for metabolic syndrome because they display typical features, including hypertension, hypertriglyceridemia, endothelial dysfunction, insulin resistance, and visceral obesity (9). It is well known that physical exercise induces profound physiological adaptations in several tissues as a response to increased metabolic requirements. One of the major events induced by physical activity is the upregulation of eNOS gene expression and the consequent
Endurance exercise training increases cardiac energy metabolism through poorly understood mechanisms. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) in cardiomyocytes contributes to cardiac adaptation. Here we demonstrate that the NO donor diethylenetriamine-NO (DETA-NO) activated mitochondrial biogenesis and function, as assessed by upregulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial transcription factor A (Tfam) expression, and by increased mitochondrial DNA content and citrate synthase activity in primary mouse cardiomyocytes. DETA-NO also induced mitochondrial biogenesis and function and enhanced both basal and insulin-stimulated glucose uptake in HL-1 cardiomyocytes. The DETA-NO-mediated effects were suppressed by either PGC-1α or Tfam small-interference RNA in HL-1 cardiomyocytes. Wild-type and eNOS(-/-) mice were subjected to 6 wk graduated swim training. We found that eNOS expression, mitochondrial biogenesis, mitochondrial volume density and number, and both basal and insulin-stimulated glucose uptake were increased in left ventricles of swim-trained wild-type mice. On the contrary, the genetic deletion of eNOS prevented all these adaptive phenomena. Our findings demonstrate that exercise training promotes eNOS-dependent mitochondrial biogenesis in heart, which behaves as an essential step in cardiac glucose transport.
This newly identified GPR40 variant results in a loss of function that prevents the beta-cell ability to adequately sense lipids as an insulin secretory stimulus because of impaired intracellular Ca2+ concentration increase.
Obesity is associated with cancer risk in esophageal adenocarcinoma (EAC). Adipose tissue directly stimulates tumor progression independently from body mass index (BMI), but the mechanisms are not fully understood. We studied the morphological, histological and molecular characteristics of peritumoral and distal adipose tissue of 60 patients with EAC, to investigate whether depot-specific differences affect tumor behavior. We observed that increased adipocyte size (a hallmark of obesity) was directly associated with leptin expression, angiogenesis (CD31) and lymphangiogenesis (podoplanin); however, these parameters were associated with nodal metastasis only in peritumoral but not distal adipose tissue of patients. We treated OE33 cells with conditioned media (CM) collected from cultured biopsies of adipose tissue and we observed increased mRNA levels of leptin and adiponectin receptors, as well as two key regulator genes of epithelial-to-mesenchymal transition (EMT): alpha-smooth muscle actin (α-SMA) and E-cadherin. This effect was greater in cells treated with CM from peritumoral adipose tissue of patients with nodal metastasis and was partially blunted by a leptin antagonist. Therefore, peritumoral adipose tissue may exert a direct effect on the progression of EAC by secreting depot-specific paracrine factors, and leptin is a key player in this crosstalk.
Aims/hypothesis: Visceral and intermuscular adipose tissue (IMAT) depots account for most obesity-related metabolic and cardiovascular complications. Muscle satellite cells (SCs) are mesenchymal stem cells giving rise to myotubes and also to adipocytes, suggesting their possible contribution to IMAT origin and expansion. We investigated the myogenic differentiation of SCs and the adipogenic potential of both preadipocytes and SCs from genetically obese Zucker rats (fa/fa), focusing on the role of Wnt signaling in these differentiation processes. Methods: SCs were isolated by single-fiber technique from flexor digitorum brevis muscle and preadipocytes were extracted from subcutaneous adipose tissue (AT). Morphological features and gene expression profile were evaluated during in vitro myogenesis and adipogenesis. Wingless-type MMTV integration site family member 10b (Wnt10b) expression was quantified by quantitative PCR in skeletal muscle and AT. Results: We did not observe any difference in the proliferation rate and in the myogenic differentiation of SCs from obese and lean rats. However, a decreased insulin-induced glucose uptake was present in myotubes originating from fa/fa rats. Under adipogenic conditions, preadipocytes and SCs of obese animals displayed an enhanced adipogenesis. Wnt10b expression was reduced in obese rats in both muscle and AT. Conclusions/interpretation: Our data suggest that the increase in different fat depots including IMAT and the reduced muscle insulin sensitivity, the major phenotypical alteration of obese Zucker rats, could be ascribed to an intrinsic defect, either genetically determined or acquired, still present in both muscle and fat precursors. The involvement of Wnt10b as a regulator of both adipogenesis and muscle-to-fat conversion is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.