Prion diseases are transmissible encephalopathies associated with the conversion of the physiological form of the prion protein (PrPC) to the disease-associated (PrPSc). Despite intense research, no therapeutic or prophylactic agent is available. The catechol-type diterpene Carnosic acid (CA) and its metabolite Carnosol (CS) from Rosmarinus officinalis have well-documented anti-oxidative and neuroprotective effects. Since oxidative stress plays an important role in the pathogenesis of prion diseases, we investigated the potential beneficial role of CA and CS in a cellular model of prion diseases (N2a22L cells) and in a cell-free prion amplification assay (RT-QuIC). The antioxidant effects of the compounds were confirmed when N2a22L were incubated with CA or CS. Furthermore, CA and CS reduced the accumulation of the disease-associated form of PrP, detected by Western Blotting, in N2a22L cells. This effect was validated in RT-QuIC assays, indicating that it is not associated with the antioxidant effects of CA and CS. Importantly, cell-free assays revealed that these natural products not only prevent the formation of PrP aggregates but can also disrupt already formed aggregates. Our results indicate that CA and CS have pleiotropic effects against prion diseases and could evolve into useful prophylactic and/or therapeutic agents against prion and other neurodegenerative diseases.
Ubiquitin-conjugating enzyme E2T (UBE2T) has been implicated in many types of cancer including hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) process plays a fundamental role during tumor metastasis and progression. However, the molecular mechanisms underlying EMT in HCC in accordance with UBE2T still remain unknown. In this study, we showed that UBE2T overexpression augmented the oncogenic properties and specifically EMT in HCC cell lines, while its silencing attenuated them. UBE2T affected the activation of EMT-associated signaling pathways: MAPK/ERK, AKT/mTOR, and Wnt/b-catenin. In addition, we revealed that the epithelial protein complex of E-cadherin/b-catenin, a vital regulator of signal transduction in tumor initiation and progression, was totally disrupted at the cell membrane. In particular, we observed that UBE2T overexpression led to E-cadherin loss accompanied by a simultaneous elevation of both cytoplasmic and nuclear b-catenin, while its silencing resulted in a strong E-cadherin turnover at the cell membrane. Interestingly, chemical inhibition of the MAPK/ERK, AKT/mTOR, and Wnt/bcatenin signaling pathways demonstrated that the nuclear translocation of b-catenin and subsequent EMT was enhanced mainly by MAPK/ERK. Collectively, our findings demonstrate the UBE2T/MAPK-ERK/b-catenin axis as a critical regulator of cell state transition and EMT in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.