Demand Response (DR) is a fundamental aspect of the smart grid concept, as it refers to the necessary open and transparent market framework linking energy costs to the actual grid operations. DR allows consumers to directly or indirectly participate in the markets where energy is being exchanged. One of the main challenges for engaging in DR is associated with the initial assessment of the potential rewards and risks under a given pricing scheme. In this paper, a Genetic Algorithm (GA) optimisation model, using Artificial Neural Network (ΑΝΝ) power predictions for day-ahead energy management at the building and district levels, is proposed. Individual building and building group analysis is conducted to evaluate ANN predictions and GA-generated solutions. ANN-based short term electric power forecasting is exploited in predicting day-ahead demand, and form a baseline scenario. GA optimisation is conducted to provide balanced load shifting and cost-of-energy solutions based on two alternate pricing schemes. Results demonstrate the effectiveness of this approach for assessing DR load shifting options based on a Time of Use pricing scheme. Through the analysis of the results, the practical benefits and limitations of the proposed approach are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.