The lowest-energy structures for all compositions of Ni n Cu m bimetallic clusters with N = n + m up to 20 atoms, N = 23, and N = 38 atoms have been determined using a genetic algorithm for unbiased structure optimization in combination with an embedded-atom method for the calculation of the total energy for a given structure. Comparing bimetallic clusters with homoatomic clusters of the same size, it is shown that the most stable structures for each cluster size are composed entirely of Ni atoms. Among the bimetallic clusters in the size range N = 2-20, the Ni N-1 Cu 1 clusters possess the highest stability. Further, it has been established that most of the bimetallic cluster structures have geometries similar to those of pure Ni clusters. The size N = 38 presents a special case, as the bimetallic clusters undergo a dramatic structural change with increasing atom fraction of Cu. Moreover, we have identified an icosahedron, a double, and a triple icosahedron with one, two, and three Ni atoms at the centers, respectively, as particularly stable structures. We show that in all global-minimum structures Ni atoms tend to occupy mainly high-coordination inner sites, and we confirm the segregation of Cu on the surface of Ni-Cu bimetallic clusters predicted in previous studies. Finally, it is observed that, in contrast to the bulk, the ground-state structures of the 15-, 16-, and 17-atom bimetallic clusters do not experience a smooth transition between the structures of the pure copper and the pure nickel clusters as a function of the relative number of the two types of atoms. For these sizes, the concentration effect on energy is more important than the geometric one.
The basin-hopping algorithm combined with the Gupta many-body potential is used to study the structural and energetic properties of (KCs)(n) and (RbCs)(n) bimetallic clusters with N=2n up to 50 atoms. Each binary structure is compared to those of the pure clusters of the same size. For the cluster size N=28 and for the size range of N=34-50, the introduction of K and Rb atoms in the Cs alkali metal cluster results in new ground state structures different from those of the pure elements. In the size range N>/=38 the binary and pure clusters show not only structural differences, but they also display different magic numbers. Most of the magic Rb-Cs and K-Cs clusters possess highly symmetric structures. They belong to a family of pIh structures, where a fivefold pancake is a dominant structural motif. Such geometries have not been reported for alkali binary clusters so far, but have been found for series of binary transition metal clusters with large size mismatch. Moreover, tendency to phase separation (shell-like segregation) is predicted for both K-Cs and Rb-Cs clusters with up to 1000 atoms. Our finding of a surface segregation in Rb-Cs clusters is different from that of theoretical and experimental studies on bulk Rb-Cs alloys where phase separation does not occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.