The release of Wolbachia infected mosquitoes is likely to form a key component of disease control strategies in the near future. We investigated the potential of using near-infrared spectroscopy (NIRS) to simultaneously detect and identify two strains of Wolbachia pipientis (wMelPop and wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. Our aim is to find faster, cheaper alternatives for monitoring those releases than the molecular diagnostic techniques that are currently in use. Our findings indicate that NIRS can differentiate females and males infected with wMelPop from uninfected wild type samples with an accuracy of 96% (N = 299) and 87.5% (N = 377), respectively. Similarly, females and males infected with wMel were differentiated from uninfected wild type samples with accuracies of 92% (N = 352) and 89% (N = 444). NIRS could differentiate wMelPop and wMel transinfected females with an accuracy of 96.6% (N = 442) and males with an accuracy of 84.5% (N = 443). This non-destructive technique is faster than the standard polymerase chain reaction diagnostic techniques. After the purchase of a NIRS spectrometer, the technique requires little sample processing and does not consume any reagents.
Heavy infestations of the blood-sucking gastrointestinal nematodes, Haemonchus contortus can cause severe anaemia in sheep and leakage of blood into the faeces, leading to morbidity and mortality. Early and accurate diagnosis of infections is critical for timely treatment of sheep, minimizing production and sheep welfare impacts. In pursuit of a quick and easy measure of H. contortus infections, we investigated the use of portable visible near infrared spectrometers for detecting the presence of haemoglobin in sheep faeces as an indicator of H. contortus infection. Calibration models built within the 400–600 nm region by partial least square regression resulted in acceptable prediction accuracies (r 2 p > 0.70 and root mean squared error of prediction <2.64 µg Hb mg−1 faeces) for haemoglobin quantification using two spectrometers. The prediction results from support vector machine regression further improved the prediction of haemoglobin in moist sheep faeces (r 2 p > 0.87 and root mean squared error of prediction <2.00 µg haemoglobin mg−1 faeces). Based on a threshold for anthelmintic treatment of 3 µg Hb mg−1 faeces, both the partial least square and support vector machine models showed high sensitivity (89%) and high specificity (>77%). The specificity of the prediction model for detecting haemoglobin in sheep faeces may be improved by adding more variations in faecal composition into the calibration model. Our success in detecting haemoglobin in sheep faeces, following minimal sample preparation, suggests that with further development, vis–near infrared spectroscopy can provide a sensitive and convenient method for on-farm diagnosis of H. contortus infections.
In order to assess the broad-scale applicability of field releases of Wolbachia for the biological control of insect-transmitted diseases, we determined the relationship between the larval diet of Aedes aegypti L. mosquitoes infected with Wolbachia strains and their susceptibility to dengue virus (DENV) infection via intrathoracic injection and oral inoculation. Larvae were reared on diets that varied in the quantity of food which had the effect of modifying development time and adult body size. Wolbachia wMel infection was associated with highly significant reductions in dengue serotype 2 (DENV-2) infection rates of between 80 and 97.5% following intrathoracic injection of adults emerging from three diet levels. Reductions were 100% in two diet level treatments following oral inoculation. Similarly, wMelPop infection was associated with highly significant reductions in DENV-2 infection rates of between 95 and 100% for intrathoracic injection and 97.5 and 100% for oral inoculation across diet level treatments. Larval diet level had no significant effect on DENV-2 infection rates in the presence of Wolbachia infection in mosquitoes that were intrathoracically injected with the virus. This indicates that the effectiveness of Wolbachia on vector competence disruption within Ae. aegypti is unlikely to be compromised by variable larval nutrition in field settings.
Background: Practical, field-ready age-grading tools for mosquito vectors of disease are urgently needed because of the impact that daily survival has on vectorial capacity. Previous studies have shown that near-infrared spectroscopy (NIRS), in combination with chemometrics and predictive modeling, can forecast the age of laboratory-reared mosquitoes with moderate to high accuracy. It remains unclear whether the technique has utility for identifying shifts in the age structure of wild-caught mosquitoes. Here we investigate whether models derived from the laboratory strain of mosquitoes can be used to predict the age of mosquitoes grown from pupae collected in the field. Methods: NIRS data from adult female Aedes albopictus mosquitoes reared in the laboratory (2, 5, 8, 12 and 15 daysold) were analysed against spectra from mosquitoes emerging from wild-caught pupae (1, 7 and 14 days-old). Different partial least squares (PLS) regression methods trained on spectra from laboratory mosquitoes were evaluated on their ability to predict the age of mosquitoes from more natural environments. Results: Models trained on spectra from laboratory-reared material were able to predict the age of other laboratoryreared mosquitoes with moderate accuracy and successfully differentiated all day 2 and 15 mosquitoes. Models derived with laboratory mosquitoes could not differentiate between field-derived age groups, with age predictions relatively indistinguishable for day 1-14. Pre-processing of spectral data and improving the PLS regression framework to avoid overfitting can increase accuracy, but predictions of mosquitoes reared in different environments remained poor. Principal components analysis confirms substantial spectral variations between laboratory and field-derived mosquitoes despite both originating from the same island population. Conclusions: Models trained on laboratory mosquitoes were able to predict ages of laboratory mosquitoes with good sensitivity and specificity though they were unable to predict age of field-derived mosquitoes. This study suggests that laboratory-reared mosquitoes do not capture enough environmental variation to accurately predict the age of the same species reared under different conditions. Further research is needed to explore alternative pre-processing methods and machine learning techniques, and to understand factors that affect absorbance in mosquitoes before field application using NIRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.