Infancy is the foundational period for learning from adults, and the dynamics of the social environment have long been considered central to children’s development. Here, we reveal a novel, naturalistic approach for studying live interactions between infants and adults. Using functional near-infrared spectroscopy (fNIRS), we simultaneously and continuously measured the brains of infants ( N = 18; 9–15 months of age) and an adult while they communicated and played with each other. We found that time-locked neural coupling within dyads was significantly greater when dyad members interacted with each other than with control individuals. In addition, we characterized the dynamic relationship between neural activation and the moment-to-moment fluctuations of mutual gaze, joint attention to objects, infant emotion, and adult speech prosody. This investigation advances what is currently known about how the brains and behaviors of infants both shape and reflect those of adults during real-life communication.
The brain adapts to asynchronous audiovisual signals by reducing the subjective temporal lag between them. However, it is currently unclear which sensory signal (visual or auditory) shifts toward the other. According to the idea that the auditory system codes temporal information more precisely than the visual system, one should expect to find some temporal shift of vision toward audition (as in the temporal ventriloquism effect) as a result of adaptation to asynchronous audiovisual signals. Given that visual information gives a more exact estimate of the time of occurrence of distal events than auditory information (due to the fact that the time of arrival of visual information regarding an external event is always closer to the time at which this event occurred), the opposite result could also be expected. Here, we demonstrate that participants' speeded reaction times (RTs) to auditory (but, critically, not visual) stimuli are altered following adaptation to asynchronous audiovisual stimuli. After receiving ''baseline'' exposure to synchrony, participants were exposed either to auditory-lagging asynchrony (VA group) or to auditory-leading asynchrony (AV group). The results revealed that RTs to sounds became progressively faster (in the VA group) or slower (in the AV group) as participants' exposure to asynchrony increased, thus providing empirical evidence that speeded responses to sounds are influenced by exposure to audiovisual asynchrony.audition ͉ perception ͉ vision ͉ time ͉ recalibration
The present study investigates brain-to-brain coupling, defined as inter-subject correlations in the hemodynamic response, during natural verbal communication. We used functional near-infrared spectroscopy (fNIRS) to record brain activity of 3 speakers telling stories and 15 listeners comprehending audio recordings of these stories. Listeners’ brain activity was significantly correlated with speakers’ with a delay. This between-brain correlation disappeared when verbal communication failed. We further compared the fNIRS and functional Magnetic Resonance Imaging (fMRI) recordings of listeners comprehending the same story and found a significant relationship between the fNIRS oxygenated-hemoglobin concentration changes and the fMRI BOLD in brain areas associated with speech comprehension. This correlation between fNIRS and fMRI was only present when data from the same story were compared between the two modalities and vanished when data from different stories were compared; this cross-modality consistency further highlights the reliability of the spatiotemporal brain activation pattern as a measure of story comprehension. Our findings suggest that fNIRS can be used for investigating brain-to-brain coupling during verbal communication in natural settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.