Bimetallic nanoparticles (BNPs) are promising candidates for fundamental research and applications as their physico-chemical properties can in many cases be tuned continuously or enhanced with respect to the mono-metallic particles. Here we investigate the possibility of fabricating silver-indium and silver-aluminium BNPs in the range of 4-5 nm diameter and of varying stoichiometry by laser vaporization and gas condensation in the gas phase. We analyse their crystalline structure and segregation behaviour using transmission electron microscopy and probe their oxidation state in optical absorption measurements by tracking spectral changes of the localized surface plasmon resonance (LSPR). These complementary techniques show that, despite the small size and the high reactivity especially of aluminium, the BNPs form a silver-rich alloyed core surrounded by an oxide shell. Exposure to air leads to consecutive oxidation, whereas annealing the BNPs in a reducing atmosphere stabilizes the alloyed particle cores, as demonstrated by a narrow and blue-shifted LSPR. This is a first step towards the stabilization of non-oxidized bimetallic nanoparticles combining a noble and a trivalent metal.
In this study, the atomic and chemical structure and the optical response of AxB1-x bimetallic nanoparticles (BNPs) combining gold or silver (A) with aluminium or indium (B) were investigated for...
The stability of elastic towers is studied through simple hands-on experiments. Using gelatinbased stackable bricks, one can investigate the maximum height a simple structure can reach before collapsing. We show through experiments and using the classical linear elastic theory, that the main limitation to the height of such towers is the buckling of the elastic structures under their own weight. Moreover, the design and architecture of the towers can be optimized to greatly improve their resistance to self-buckling. To this aim, the maximum height of hollow and tapered towers is investigated. The experimental and theoretical developments presented in this paper can help students grasp at fundamental concepts in elasticity and mechanical stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.