Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.
International audienceCation insertion reactions in inorganic host frameworks are well-established phenomena. Over the last 40 years, a myriad of examples have been documented, which have given rise to key applications such as for electrochemical storage devices. By contrast, materials able to reversibly insert anions into their host lattice are rare, and consist essentially of graphite intercalation compounds (GICs), thus limiting their potential use. Organic materials, conversely, if properly designed, could pave the way for future developments in anionic insertion electrochemistry, by virtue of the rational incorporation of p-type redox-active organic moieties. Here, we report the discovery of a p-type organic host lattice based on a simple crystallized aromatic diamine. The reversible anion insertion process relies on the electrochemical activity of neutral secondary amino groups incorporated into a robust terephthalate backbone. XRD, TEM and EELS studies reveal the attainment of a unique lamellar structure conducive to the oxidative insertion of anions (including the bulky TFSI-). In a dual-ion cell configuration using lithium as the negative electrode, this organic structure can react reversibly at high operating potential (hEi z 3.22 V vs. Li+/Li) with good cycling performance even without carbon addition, hence generating further avenues for the development of organic batteries and more generally, the field of intercalation chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.