Conservation of animal genetic resources requires regular monitoring and interventions to maintain population size and manage genetic variability. This study uses genealogical information to evaluate the impact of conservation measures in Europe, using (i) data from the Domestic Animal Diversity Information System (DAD-IS) and (ii) a posteriori assessment of the impact of various conservation measures on the genetic variability of 17 at-risk breeds with a wide range of interventions. Analysis of data from DAD-IS showed that 68% of national breed populations reported to receive financial support showed increasing demographic trends, v. 51% for those that did not. The majority of the 17 at-risk breeds have increased their numbers of registered animals over the last 20 years, but the changes in genetic variability per breed have not always matched the trend in population size. These differences in trends observed in the different metrics might be explained by the tensions between interventions to maintain genetic variability, and development initiatives which lead to intensification of selection.
Different methods and formulae have been suggested to estimate effective population size based on pedigree data. These methods vary in their sensitivity to various sources of bias related to heterogenous pedigree knowledge or pedigree structure. We propose here to adapt a pre-existing method estimating coancestry rate for the specific purpose of monitoring genetic variability within livestock and captive populations. Coancestry rate is computed by averaging coancestries between pairs of individuals corrected by their equivalent numbers of generations, while restricting pedigree information to a maximum number of generations. Simulation demonstrated that restricting the number of generations allows a much clearer observation of the impact of recent events on genetic variability. Restricting the number of generations for the calculation of coancestry also has less bias related to incomplete pedigree, although it may overestimate effective population size due to non-independence in family sizes across generations. This strategy was tested on the Norwegian Nordland Lyngen horse, the Colblood Trotter horse, the French Avranchin sheep, and Bresse chicken, illustrating the applications of the approach for the monitoring of genetic variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.