This paper studies the information content of the S&P 500 and VIX markets on the volatility of the S&P 500 returns. We estimate a flexible affine model based on a joint time series of underlying indexes and option prices on both markets. An extensive model specification analysis reveals that jumps and a stochastic level of reversion for the variance help reproduce risk-neutral distributions as well as the term structure of volatility smiles and of variance risk premia. We find that the S&P 500 and VIX derivatives prices are consistent in times of market calm but contain conflicting information on the variance during market distress.
We estimate a flexible affine model using an unbalanced panel containing S&P 500 and VIX index returns and option prices, and analyze the contribution of VIX options to the model's in-and out-of-sample performance. We find that they contain valuable information on the risk-neutral conditional distributions of volatility at different time horizons, which is not spanned by the S&P 500 market. This information allows enhanced estimation of the variance risk premium. We gain new insights on the term structure of the variance risk premium, present a trading strategy exploiting these insights and show how to improve S&P 500 return forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.