BackgroundAlthough estrogen receptor α (ERα) acts primarily as a transcription factor, it can also elicit membrane‐initiated steroid signaling. Pharmacological tools and transgenic mouse models previously highlighted the key role of ERα membrane‐initiated steroid signaling in 2 actions of estrogens in the endothelium: increase in NO production and acceleration of reendothelialization.Methods and ResultsUsing mice with ERα mutated at cysteine 451 (ERaC451A), recognized as the key palmitoylation site required for ERα plasma membrane location, and mice with disruption of nuclear actions because of inactivation of activation function 2 (ERaAF20 = ERaAF2°), we sought to fully characterize the respective roles of nuclear versus membrane‐initiated steroid signaling in the arterial protection conferred by ERα. ERaC451A mice were fully responsive to estrogens to prevent atheroma and angiotensin II–induced hypertension as well as to allow flow‐mediated arteriolar remodeling. By contrast, ERαAF20 mice were unresponsive to estrogens for these beneficial vascular effects. Accordingly, selective activation of nuclear ERα with estetrol was able to prevent hypertension and to restore flow‐mediated arteriolar remodeling.ConclusionsAltogether, these results reveal an unexpected prominent role of nuclear ERα in the vasculoprotective action of estrogens with major implications in medicine, particularly for selective nuclear ERα agonist, such as estetrol, which is currently under development as a new oral contraceptive and for hormone replacement therapy in menopausal women.
In patients successfully resuscitated from cardiac arrest with a postcardiac arrest shock, high level of endotoxemia is independently associated with duration of postcardiac arrest shock and the amount of vasopressive drugs. Whether treatment targeting endotoxemia could be beneficial in the management of postcardiac arrest shock needs to be studied in further randomized controlled studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.