Within EU FP7 project NANOVALID, the (eco)toxicity of 7 well-characterized engineered nanomaterials (NMs) was evaluated by 15 bioassays in 4 laboratories. The highest tested nominal concentration of NMs was 100 mg/l. The panel of the bioassays yielded the following toxicity order: Ag > ZnO > CuO > TiO2 > MWCNTs > SiO2 > Au. Ag, ZnO and CuO proved very toxic in the majority of assays, assumingly due to dissolution. The latter was supported by the parallel analysis of the toxicity of respective soluble metal salts. The most sensitive tests/species were Daphnia magna (towards Ag NMs, 24-h EC50 = 0.003 mg Ag/l), algae Raphidocelis subcapitata (ZnO and CuO, 72-h EC50 = 0.14 mg Zn/l and 0.7 mg Cu/l, respectively) and murine fibroblasts BALB/3T3 (CuO, 48-h EC50 = 0.7 mg Cu/l). MWCNTs showed toxicity only towards rat alveolar macrophages (EC50 = 15.3 mg/l) assumingly due to high aspect ratio and TiO2 towards R. subcapitata (EC50 = 6.8 mg Ti/l) due to agglomeration of TiO2 and entrapment of algal cells. Finally, we constructed a decision tree to select the bioassays for hazard ranking of NMs. For NM testing, we recommend a multitrophic suite of 4 in vitro (eco)toxicity assays: 48-h D. magna immobilization (OECD202), 72-h R. subcapitata growth inhibition (OECD201), 30-min Vibrio fischeri bioluminescence inhibition (ISO2010) and 48-h murine fibroblast BALB/3T3 neutral red uptake in vitro (OECD129) representing crustaceans, algae, bacteria and mammalian cells, respectively. Notably, our results showed that these assays, standardized for toxicity evaluation of “regular” chemicals, proved efficient also for shortlisting of hazardous NMs. Additional assays are recommended for immunotoxicity evaluation of high aspect ratio NMs (such as MWCNTs).
Lanthanide (LNs) release into the environment is expected to greatly increase in the coming years due to a high demand for new technologies. However there is a gap in the ecological risk assessment of these metals because most of the ecotoxicological studies have been performed with only one element, although they are usually found in nature as a group. This research evaluated the effects of mixtures of three lanthanides, cerium (Ce), gadolinium (Gd), and lutetium (Lu), representative of the light, middle and heavy rare earth elements, respectively, on seven aquatic species (A. fischeri, R. subcapitata, C. vulgaris, B. calyciflorus, H. incongruens, D. magna and D. rerio). Lanthanide content decreased over time in all toxicity test media and it was observed that LN sedimentation starts at the beginning of the tests with a steep decline of the available LN amount. Potential toxic effects of LNs were observed only in five species of the seven studied, predominantly in the unicellular organism (A. fischeri) and in the organisms belonging to the lower trophic levels (R. subcapitata and B. calyciflorus). The multi-toxicity approach performed in this study showed synergistic effects in tests performed with the bacteria A. fischeri and the algae R. subcapitata, and antagonistic effects for the rotifer B. calyciflorus. Although predicting the response of aquatic organisms exposed to multi-elements is not an easy task and can be masked by potential interactions with other compounds or even by nutrient removal. The variation in toxic action among species observed in this study reveals that lanthanide interaction in toxicity mechanisms should not be discarded, and supports that further studies with LN mixtures are required to properly understand their toxic behaviour in nature ecosystems.CAPSULE Mixtures of lanthanides showed toxic effects in bacteria and organisms of low trophic levels, with potential synergistic or antagonistic effects depending on the studied organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.