Objective: Recent in vivo results have shown prominent tissue sparing effect of radiotherapy with ultra-high dose rates (FLASH) compared to conventional dose rates (CONV). Oxygen depletion has been proposed as the underlying mechanism, but in vitro data to support this have been lacking. The aim of the current study was to compare FLASH to CONV irradiation under different oxygen concentrations in vitro. Methods: Prostate cancer cells were irradiated at different oxygen concentrations (relative partial pressure ranging between 1.6 and 20%) with a 10 MeV electron beam at a dose rate of either 600 Gy/s (FLASH) or 14 Gy/min (CONV), using a modified clinical linear accelerator. We evaluated the surviving fraction of cells using clonogenic assays after irradiation with doses ranging from 0 to 25 Gy. Results: Under normoxic conditions, no differences between FLASH and CONV irradiation were found. For hypoxic cells (1.6%), the radiation response was similar up to a dose of about 5–10 Gy, above which increased survival was shown for FLASH compared to CONV irradiation. The increased survival was shown to be significant at 18 Gy, and the effect was shown to depend on oxygen concentration. Conclusion: The in vitro FLASH effect depends on oxygen concentration. Further studies to characterize and optimize the use of FLASH in order to widen the therapeutic window are indicated. Advances in knowledge: This paper shows in vitro evidence for the role of oxygen concentration underlying the difference between FLASH and CONV irradiation.
FLASH radiotherapy has emerged as a treatment technique with great potential to increase the differential effect between normal tissue toxicity and tumor response compared to conventional radiotherapy. To evaluate the feasibility of FLASH radiotherapy in a relevant clinical setting, we have commenced a feasibility and safety study of FLASH radiotherapy in canine cancer patients with spontaneous superficial solid tumors or microscopic residual disease, using the electron beam of our modified clinical linear accelerator. The setup for FLASH radiotherapy was established using a short electron applicator with a nominal source-to-surface distance of 70 cm and custom-made Cerrobend blocks for collimation. The beam was characterized by measuring dose profiles and depth dose curves for various field sizes. Ten canine cancer patients were included in this initial study; seven patients with nine solid superficial tumors and three patients with microscopic disease. The administered dose ranged from 15 to 35 Gy. To ensure correct delivery of the prescribed dose, film measurements were performed prior to and during treatment, and a Farmer-type ion-chamber was used for monitoring. Treatments were found to be feasible, with partial response, complete response or stable disease recorded in 11/13 irradiated tumors. Adverse events observed at follow-up ranging from 3-6 months were mild and consisted of local alopecia, leukotricia, dry desquamation, mild erythema or swelling. One patient receiving a 35 Gy dose to the nasal planum, had a grade 3 skin adverse event. Dosimetric procedures, safety and an efficient clincal workflow for FLASH radiotherapy was established. The experience from this initial study will be used as a basis for a veterinary phase I/II clinical trial with more specific patient inclusion selection, and subsequently for human trials.
BackgroundIrradiation with ultra-high dose rate (FLASH) has been shown to spare normal tissue without hampering tumor control in several in vivo studies. Few cell lines have been investigated in vitro, and previous results are inconsistent. Assuming that oxygen depletion accounts for the FLASH sparing effect, no sparing should appear for cells irradiated with low doses in normoxia.MethodsSeven cancer cell lines (MDA-MB-231, MCF7, WiDr, LU-HNSCC4, HeLa [early passage and subclone]) and normal lung fibroblasts (MRC-5) were irradiated with doses ranging from 0 to 12 Gy using FLASH (≥800 Gy/s) or conventional dose rates (CONV, 14 Gy/min), with a 10 MeV electron beam from a clinical linear accelerator. Surviving fraction (SF) was determined with clonogenic assays. Three cell lines were further studied for radiation-induced DNA-damage foci using a 53BP1-marker and for cell cycle synchronization after irradiation.ResultsA tendency of increased survival following FLASH compared with CONV was suggested for all cell lines, with significant differences for 4/7 cell lines. The magnitude of the FLASH-sparing expressed as a dose-modifying factor at SF=0.1 was around 1.1 for 6/7 cell lines and around 1.3 for the HeLasubclone. Similar cell cycle distributions and 53BP1-foci numbers were found comparing FLASH to CONV.ConclusionWe have found a FLASH effect appearing at low doses under normoxic conditions for several cell lines in vitro. The magnitude of the FLASH effect differed between the cell lines, suggesting inherited biological susceptibilities for FLASH irradiation.
Radiotherapy can induce an immunological response. One limiting factor is side effects on normal tissue. Using FLASH radiotherapy, side effects could possibly be reduced. The efficacy of FLASH in relation to conventional radiotherapy (CONV-RT) has not been extensively explored in fully immunocompetent animals. Fully immunocompetent Fischer 344 rats were inoculated with NS1 glioblastoma cells subcutaneously or intracranially. Radiotherapy was delivered with FLASH or CONV-RT at 8 Gy × 2 (subcutaneous tumors) and 12.5 Gy × 2 (intracranial tumors). Cured animals were re-challenged in order to explore long-term anti-tumor immunity. Serum analytes and gene expression were explored. The majority of animals with subcutaneous tumors were cured when treated with FLASH or CONV-RT at 8 Gy × 2. Cured animals could reject tumor re-challenge. TIMP-1 in serum was reduced in animals treated with FLASH 8 Gy × 2 compared to control animals. Animals with intracranial tumors survived longer when treated with FLASH or CONV-RT at 12.5 Gy × 2, but cure was not reached. CONV-RT and FLASH were equally effective in fully immunocompetent animals with glioblastoma. Radiotherapy was highly efficient in the subcutaneous setting, leading to cure and long-term immunity in the majority of the animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.