Double emulsions are highly structured fluids consisting of emulsion drops that contain smaller droplets inside. Although double emulsions are potentially of commercial value, traditional fabrication by means of two emulsification steps leads to very ill-controlled structuring. Using a microcapillary device, we fabricated double emulsions that contained a single internal droplet in a core-shell geometry. We show that the droplet size can be quantitatively predicted from the flow profiles of the fluids. The double emulsions were used to generate encapsulation structures by manipulating the properties of the fluid that makes up the shell. The high degree of control afforded by this method and the completely separate fluid streams make this a flexible and promising technique.
We study experimentally the behaviour of a drop deposited on a conical fibre. It is shown that for wetting liquids, such a drop spontaneously moves towards the region of lower curvature. The driving force is measured and shown to be a gradient of Laplace pressure, which allows us to characterize the dynamics of these self-propelling drops. We conclude by discussing the efficiency of this device for drying a solid initially coated with a liquid film.30É. Lorenceau and D. Quéré
Diblock copolymers are known to spontaneously organize into polymer vesicles. Typically, this is achieved through the techniques of film rehydration or electroformation. We present a new method for generating polymer vesicles from double emulsions. We generate precision water-in-oil-in-water double emulsions from the breakup of concentric fluid streams; the hydrophobic fluid is a volatile mixture of organic solvent that contains dissolved diblock copolymers. We collect the double emulsions and slowly evaporate the organic solvent, which ultimately directs the self-assembly of the dissolved diblock copolymers into vesicular structures. Independent control over all three fluid streams enables precision assembly of polymer vesicles and provides for highly efficient encapsulation of active ingredients within the polymerosomes. We also use double emulsions with several internal drops to form new polymerosome structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.