Rationale: The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors.Objectives: Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs.Methods: We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. Measurements and Main Results:We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood.Conclusions: Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics. Correspondence and requests for reprints should be addressed to Claudia V. Jakubzick, Ph.D., Department of Pediatrics and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206. E-mail: jakubzickc@njhealth.org This article has an online supplement, which is accessible from this issue's table of contents at www.atsjournals.org The human respiratory tract has a branching structure that terminates in millions of alveoli, whose luminal surface covers an approximate area of 50 to 100 m 2 . In comparison to other barrier surfaces, such as the skin (2 m 2 ) and the gut (10 m 2 ), this surface area is massive, and therefore, comprises the body's largest interface with the ambient environment. Because of normal respiratory function, the average human exchanges 7,000 to 9,000 L of gas each day and inhales billions of particles, allergens, and microbes. Accordingly, the human lung constitutes a major site for the innate and adaptive immune responses. In this context, cells in the mononuclear phagocyte system (MPS), which consists of macrophages, monocytes, monocytederived cells, and dendritic cells (DCs), play critical roles. T...
BackgroundInfluenza A virus (IAV) infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2) activates the majority of antioxidant genes.MethodsAlveolar type II (ATII) cells and alveolar macrophages (AM) were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like) cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8) virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2) or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively.ResultsWe found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis) but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and oxidative stress. However, AdNrf2 did not increase IFN-λ1 (IL-29) levels.ConclusionsOur results indicate that IAV induces alveolar epithelial injury and that Nrf2 protects these cells from the cytopathic effects of IAV likely by increasing the expression of antioxidant genes. Identifying the pathways involved in protecting cells from injury during influenza infection may be particularly important for developing new therapeutic strategies.
BackgroundCigarette smoke (CS) is a highly complex mixture and many of its components are known carcinogens, mutagens, and other toxic substances. CS induces oxidative stress and cell death, and this cell toxicity plays a key role in the pathogenesis of several pulmonary diseases.Methodology/Principal FindingsWe studied the effect of cigarette smoke extract (CSE) in human alveolar epithelial type I-like (ATI-like) cells. These are isolated type II cells that are differentiating toward the type I cell phenotype in vitro and have lost many type II cell markers and express type I cell markers. ATI-like cells were more sensitive to CSE than alveolar type II cells, which maintained their differentiated phenotype in vitro. We observed disruption of mitochondrial membrane potential, apoptosis and necrosis that were detected by double staining with acridine orange and ethidium bromide or Hoechst 33342 and propidium iodide and TUNEL assay after treatment with CSE. We also detected caspase 3 and caspase 7 activities and lipid peroxidation. CSE induced nuclear translocation of Nrf2 and increased expression of Nrf2, HO-1, Hsp70 and Fra1. Moreover, we found that Nrf2 knockdown sensitized ATI-like cells to CSE and Nrf2 overexpression provided protection against CSE-induced cell death. We also observed that two antioxidant compounds N-acetylcysteine and trolox protected ATI-like cells against injury by CSE.ConclusionsOur study indicates that Nrf2 activation is a major factor in cellular defense of the human alveolar epithelium against CSE-induced toxicity and oxidative stress. Therefore, antioxidant agents that modulate Nrf2 would be expected to restore antioxidant and detoxifying enzymes and to prevent CS-related lung injury and perhaps lessen the development of emphysema.
The alveolar surface is covered by an epithelium composed of 2 main cell types: type I and type II cells. Alveolar type II (ATII) cells have a distinct morphology with apical microvilli and characteristic lamellar bodies, which are the intracellular storage form of pulmonary surfactant. ATII cells play an important role in innate immunity and produce and secrete pulmonary surfactant. They proliferate to restore the epithelium after damage to the more sensitive type I cells. We developed an efficient and rapid method to isolate and purify ATII cells from mice. Alveolar epithelial cells were dissociated in the murine lung with dispase and lung tissue was gently minced with a GentleMACS Dissociator. ATII cell purification was performed using negative depletion with CD45 MicroBeads and positive selection for the epithelial-cell adhesion molecule (Ep-CAM) by magnetic labeling with Streptavidin MicroBeads in MACS LS columns. The purity of these cells as measured by flow cytometry was up to 92.1% and 91.1% for co-staining with Ep-CAM and cytokeratin and co-staining with Ep-CAM and SP-A, respectively. The resulting ATII cell population has a high purity, viability, and yield. The phenotype of isolated and cultured ATII cells was confirmed by electron micrographs, expression of surfactant proteins (SP-A, proSP-B, mature SP-B, proSP-C, SP-D), and lysophosphatidylcholine acyltransferase (LPCAT) by western blotting and immunocytofluorescence. This protocol is based on surface antigens and our data demonstrated that murine ATII cells can be rapidly isolated, efficiently purified, and effectively cultured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.