Although endoscopic studies in adult humans have suggested that laryngeal closure can limit alveolar ventilation during nasal intermittent positive pressure ventilation (nIPPV), there are no available data regarding glottal muscle activity during nIPPV. In addition, laryngeal behavior during nIPPV has not been investigated in neonates. The aim of the present study was to assess laryngeal muscle response to nIPPV in nonsedated newborn lambs. Nine newborn lambs were instrumented for recording states of alertness, electrical activity [electromyograph (EMG)] of glottal constrictor (thyroarytenoid, TA) and dilator (cricothyroid, CT) muscles, EMG of the diaphragm (Dia), and mask and tracheal pressures. nIPPV in pressure support (PS) and volume control (VC) modes was delivered to the lambs via a nasal mask. Results show that increasing nIPPV during wakefulness and quiet sleep led to a progressive disappearance of Dia and CT EMG and to the appearance and subsequent increase in TA EMG during inspiration, together with an increase in trans-upper airway pressure (TUAP). On rare occasions, transmission of nIPPV through the glottis was prevented by complete, active glottal closure, a phenomenon more frequent during active sleep epochs, when irregular bursts of TA EMG were observed. In conclusion, results of the present study suggest that active glottal closure develops with nIPPV in nonsedated lambs, especially in the VC mode. Our observations further suggest that such closure can limit lung ventilation when raising nIPPV in neonates. thyroarytenoid muscle; cricothyroid muscle; diaphragm; states of alertness; intermittent positive-pressure ventilation NASAL INTERMITTENT positive-pressure ventilation (nIPPV) is increasingly used in the neonatal period (12) as treatment for respiratory distress syndrome (22) and apneas of prematurity (3,27) and as a bridge between endotracheal tube ventilation and spontaneous ventilation (6,19). Previous studies using endoscopic observations in adult humans have shown that laryngeal closure can occur during nIPPV, especially in the volume control (VC) mode (17, 18, 34 -36). In addition, laryngeal closure appears to increase with increasing ventilatory support, together with decreasing subglottal (alveolar) ventilation (40). Such laryngeal behavior is of high clinical importance since it has been linked to falls in oxygen saturation when increasing nIPPV during sleep in adult humans (7) and could divert positive pressure from the airways, leading to increased gastric distension (11). However, although the glottal closure observed endoscopically during nIPPV suggests an active contraction of glottal constrictor muscles, there are, to our knowledge, no data on glottal muscle electromyograms (EMG) during nIPPV. Moreover, there are no currently available studies on laryngeal dynamics during nIPPV in the neonatal period. Thus the aim of the present study was to test the hypotheses that 1) glottal narrowing during nIPPV is also present in the neonatal period, especially in the VC mode; and 2) glottal...
-Bussière, Pierre-Hugues Fortier, and Jean-Paul Praud. Laryngeal chemoreflexes induced by acid, water, and saline in nonsedated newborn lambs during quiet sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.