Rapeseed meal is a cheap and abundant raw material, particularly rich in phenolic compounds of biotechnological interest. In this study, we developed a two-step bioconversion process of naturally occurring sinapic acid (4-hydroxy-3,5-dimethoxycinnamic acid) from rapeseed meal into canolol by combining the complementary potentialities of two filamentous fungi, the micromycete Aspergillus niger and the basidiomycete Neolentinus lepideus. Canolol could display numerous industrial applications because of its high antioxidant, antimutagenic and anticarcinogenic properties. In the first step of the process, the use of the enzyme feruloyl esterase type-A (named AnFaeA) produced with the recombinant strain A. niger BRFM451 made it possible to release free sinapic acid from the raw meal by hydrolysing the conjugated forms of sinapic acid in the meal (mainly sinapine and glucopyranosyl sinapate). An amount of 39 nkat AnFaeA per gram of raw meal, at 55 °C and pH 5, led to the recovery of 6.6 to 7.4 mg of free sinapic acid per gram raw meal, which corresponded to a global hydrolysis yield of 68 to 76% and a 100% hydrolysis of sinapine. Then, the XAD2 adsorbent (a styrene and divinylbenzene copolymer resin), used at pH 4, enabled the efficient recovery of the released sinapic acid, and its concentration after elution with ethanol. In the second step, 3-day-old submerged cultures of the strain N. lepideus BRFM15 were supplied with the recovered sinapic acid as the substrate of bioconversion into canolol by a non-oxidative decarboxylation pathway. Canolol production reached 1.3 g/L with a molar yield of bioconversion of 80% and a productivity of 100 mg/L day. The same XAD2 resin, when used at pH 7, allowed the recovery and purification of canolol from the culture broth of N. lepideus. The two-step process used mild conditions compatible with green chemistry.
Sunflower and rapeseed meals are agro-industrial coproducts that contain high amount of phenolics (1-4 % dry matter), mostly as esters of caffeic acid (CA) and sinapic acid (SA), respectively. The enzymatic hydrolysis of the ester bonds enables to recover the corresponding free phenolic acids that are bioactive compounds and platform molecules for various applications in green chemistry. Here we aimed to find the best route for producing free CA and SA by applying various fungal carboxylic ester hydrolases from recombinant Aspergillus niger strains either directly on crude meal or on their phenolic extracts obtained by methanolic extraction. Two types of meals were studied: (i) industrial (commercial) meals (I-meals), produced by a process that includes cooking at 95-100°C and steam desolventizing at 105-107°C, and (ii) non-industrial meals (NI-meals) obtained at pilot-scale with much milder heat treatment, that offer a higher total phenolic content. CA release through hydrolysis of sunflower meal (SFM) was successfully achieved with A. niger type-B feruloyl esterase (AnFaeB) and chlorogenic acid esterase (ChlE). Maximal amount of free CA released was of 54.0 ± 1.1 to 59.8 ± 2.1 µmol/g defatted dry matter (DDM) from I-SFM (94-100% hydrolysis yield) against 42.0 ± 1.1 to 52.3 ± 0.2 µmol/g DDM (59-73% hydrolysis yield) from NI-SFM in which CA release was hampered by a phenolic oxidation side-reaction, seemingly due to meal endogenous polyphenol oxidase activities. AnFaeB and ChlE hydrolysis of phenolic extracts from NI-SFM increased the CA amount obtained to 55.0-68.1 µmol/g DDM (77-95% hydrolysis yield). In all cases, AnFaeB showed broader specificity towards SFM caffeoyl quinic acid isomers than ChlE. In particular, ChlE did not hydrolyze 3-O-caffeoylquinic acid. The maximal amount of free SA released by AnFaeA hydrolysis was 41.3 ± 0.3 µmol/g DDM from NI-SFM (50% hydrolysis yield) and 32.3 ± 0.4 µmol/g DDM from the phenolic extract (64% hydrolysis yield), with AnFaeA also having sinapine transesterification activity that led to the synthesis of 1,2-di-Osinapoyl-β-D-glucose. Finally, of all the substrates tested for enzymatic hydrolysis in our conditions, I-RSM and NI-SFM extract showed the best compromise between initial total phenolic content, hydrolysis yields and amounts of CA/SA released.
BackgroundLavender (Lavandula angustifolia) and lavandin (a sterile hybrid of L. angustifolia × L. latifolia) essential oils are among those most commonly used in the world for various industrial purposes, including perfumes, pharmaceuticals and cosmetics. The solid residues from aromatic plant distillation such as lavender- and lavandin-distilled straws are generally considered as wastes, and consequently either left in the fields or burnt. However, lavender- and lavandin-distilled straws are a potentially renewable plant biomass as they are cheap, non-food materials that can be used as raw feedstocks for green chemistry industry. The objective of this work was to assess different pathways of valorization of these straws as bio-based platform chemicals and fungal enzymes of interest in biorefinery.ResultsSugar and lignin composition analyses and saccharification potential of the straw fractions revealed that these industrial by-products could be suitable for second-generation bioethanol prospective. The solvent extraction processes, developed specifically for these straws, released terpene derivatives (e.g. τ-cadinol, β-caryophyllene), lactones (e.g. coumarin, herniarin) and phenolic compounds of industrial interest, including rosmarinic acid which contributed to the high antioxidant activity of the straw extracts. Lavender and lavandin straws were also suitable inducers for the secretion of a wide panel of lignocellulose-acting enzymes (cellulases, hemicellulases and oxido-reductases) from the white-rot model fungus Pycnoporus cinnabarinus. Interestingly, high amounts of laccase and several lytic polysaccharide monooxygenases were identified in the lavender and lavandin straw secretomes using proteomics.ConclusionsThe present study demonstrated that the distilled straws of lavender and lavandin are lignocellulosic-rich materials that can be used as raw feedstocks for producing high-added value compounds (antioxidants, aroma) and fungal oxidative enzymes, which represent opportunities to improve the decomposition of recalcitrant lignocellulose into biofuel. Hence, the structure and the physico-chemical properties of these straws clearly open new perspectives for use in biotechnological processes involving especially filamentous fungi. These approaches represent sustainable strategies to foster the development of a local circular bioeconomy.Electronic supplementary materialThe online version of this article (10.1186/s13068-018-1218-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.