Tomographic reconstruction is concerned with computing the cross-sections of an object from a finite number of projections. Many conventional methods represent the cross-sections as images on a regular grid. In this paper, we study a recent coordinate-based neural network for tomographic reconstruction, where the network inputs a spatial coordinate and outputs the attenuation coefficient on the coordinate. This coordinate-based network allows the continuous representation of an object. Based on this network, we propose a spatial regularization term, to obtain a high-quality reconstruction. Experimental results on synthetic data show that the regularization term improves the reconstruction quality significantly, compared to the baseline. We also provide an ablation study for different architecture configurations and hyper-parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.