Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Implantable electrophoretic drug delivery devices have shown promise for applications ranging from treating pathologies such as epilepsy and cancer to regulating plant physiology. Upon applying a voltage, the devices electrophoretically transport charged drug molecules across an ion‐conducting membrane out to the local implanted area. This solvent‐flow‐free “dry” delivery enables controlled drug release with minimal pressure increase at the outlet. However, a major challenge these devices face is limiting drug leakage in their idle state. Here, a method of reducing passive drug leakage through the choice of the drug co‐ion is presented. By switching acetylcholine's associated co‐ion from chloride to carboxylate co‐ions as well as sulfopropyl acrylate‐based polyanions, steady‐state drug leakage rate is reduced up to sevenfold with minimal effect on the active drug delivery rate. Numerical simulations further illustrate the potential of this method and offer guidance for new material systems to suppress passive drug leakage in electrophoretic drug delivery devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.