Provisioning services, such as the production of food, feed, and fiber, have always been the main focus of agriculture. Since the 1950s, intensive cropping systems based on the cultivation of a single crop or a single cultivar, in simplified rotations or monocultures, and relying on extensive use of agrochemical inputs have been preferred to more diverse, self-sustaining cropping systems, regardless of the environmental consequences. However, there is increasing evidence that such intensive agroecosystems have led to a decline in biodiversity as well as threatening the environment and have damaged a number of ecosystem services such as the biogeochemical nutrient cycles and the regulation of climate and water quality. Consequently, the current challenge facing agriculture is to ensure the future of food production while reducing the use of inputs and limiting environmental impacts and the loss of biodiversity. Here, we review examples of multiple cropping systems that aim to use biotic interactions to reduce chemical inputs and provide more ecosystem services than just provisioning. Our main findings are the identification of underlying ecological processes and management strategies related to the provision of pairs of ecosystem services namely food production and a regulation service. We also found gaps between ecological knowledge and the constraints of agricultural practices in taking account of the interactions and possible trade-offs between multiple ecosystem services as well as socioeconomic constraints. We present guidelines for the design of multiple cropping systems combining ecological, agricultural, and genetic concepts and approaches.
Legume growing has many benefits. Indeed legumes provide plant proteins for animal feed and human food. Legumes fix atmospheric N 2 and, in turn, provide cheap and green N fertilisers. Additionally, legumes are used as diversification crops in rotations based on oilseed rape and cereals. Despite those benefits, legume crops in Europe represent less than 4 % of arable lands, and European legume seeds are underused for animal and human nutrition. Nonetheless, European authorities are now fostering the development of legume crops for sustainable agriculture. Here, we analyse forage and grain legume-producing systems since 1950 in order to identify the actual constraints of legume development. We show that legumes can contribute to the agroecological transition for sustainable agriculture, food and energy and for sustainable agri-food systems. Then, we point out that high added-value niche markets are required for supporting legume production. The major research needs identified are (1) analysing the constraints of the current systems and identifying ways of moving towards systems that include more legumes, (2) identifying new and diversified uses for legumes in a sustainable food chain, (3) assessing and improving the ecosystem services provided by legumes at cropping system and territory scales and (4) promoting agroecology through and for legume crop management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.