The human brain comprises an efficient communication network, with its macroscale connectome organization argued to be directly associated with the underlying microscale organization of the cortex. Here, we further examine this link in the human brain cortex by using the ultrahigh-resolution BigBrain dataset; 11,660 BigBrain profiles of laminar cell structure were extracted from the BigBrain data and mapped to the MRI based Desikan–Killiany atlas used for macroscale connectome reconstruction. Macroscale brain connectivity was reconstructed based on the diffusion-weighted imaging dataset from the Human Connectome Project and cross-correlated to the similarity of laminar profiles. We showed that the BigBrain profile similarity between interconnected cortical regions was significantly higher than those between nonconnected regions. The pattern of BigBrain profile similarity across the entire cortex was also found to be strongly correlated with the pattern of cortico-cortical connectivity at the macroscale. Our findings suggest that cortical regions with higher similarity in the laminar cytoarchitectonic patterns have a higher chance of being connected, extending the evidence for the linkage between macroscale connectome organization and microscale cytoarchitecture.
MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmen-method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.