Dry eye symptoms are among the leading complaints in ophthalmology. Dry eye disease (DED) is associated with significant pain affecting quality of life. Cellular and molecular mechanisms underlying ocular pain associated with DED are not fully understood. In this study, we investigated the ocular surface of patients with DED using in vivo confocal microscopy (IVCM) to quantify corneal nerve density and its relation with corneal inflammation. Gene expression of the proinflammatory markers HLA-DR, IL-6, CXCL12, and CCL2 and the receptors CXCR4 and CCR2, as well as PENK (enkephalin precursor), was therefore quantified in conjunctival impression cytology specimens. Thirty-two patients with DED and 15 age-matched controls were included. Subbasal nerve density was significantly lower in DED patients compared to controls. IVCM analysis revealed that DED patients had a significantly higher corneal dendritic cell density compared to controls. Conjunctival impression cytology analysis revealed that HLA-DR, IL-6, CXCR4, and CCL2/CCR2 mRNA levels were significantly increased in DED patients compared to controls, whereas PENK mRNA levels were significantly decreased. Similar results were obtained in vitro on immortalized human conjunctiva-derived epithelial cells challenged with osmotic stress that mimics the DED condition. These results demonstrate that proinflammatory molecules and endogenous enkephalin have opposite gene regulation during DED.
Tear hyperosmolarity is known to cause ocular surface inflammation in dry eye syndrome. Benzalkonium chloride (BAK), an eyedrop preservative, is known to induce dry eye in long-term-treated patients. Analyzing the modulation of the proinflammatory potential of hyperosmolarity in the presence of BAK on the conjunctiva could give new insights into the effect of this preservative on the disease. In a hyperosmolar model on a conjunctiva-derived cell line, and in the presence of BAK, we evaluated key inflammatory markers [CCL2, IL-8, IL-6, macrophage migration inhibitory factor (MIF) and intercellular adhesion molecule (ICAM)-1] as well as the osmoprotectant element nuclear factor of activated T cells (NFAT)5 using ELISA, RT-qPCR or immunofluorescence staining. Hyperosmolarity highly stimulated CCL2 and NFAT5 in these cells. BAK alone only increased IL-6 expression. The stress-combined condition stimulated CCL2, NFAT5, MIF and IL-8 secretion. ICAM-1 was not modulated by any of the conditions tested. In this model, hyperosmolarity and BAK induced the release of different proinflammatory mediators, and, when combined, they lead to the release of additional inflammatory cytokines. This in vitro study highlights the importance of avoiding long-term ophthalmic treatments containing BAK, as tear film hyperosmolarity can be a result of its detergent action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.