The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.
Solution pH appears to be the most important regulator of the biosorptive removal of chromium ions from aqueous solutions. This work presents a kinetic study of the effects of solution pH on Cr(VI) and total chromium removal from aqueous solution by Hass avocado shell (HAS) in batch and continuous packed bed column systems. Different Cr(VI) and total chromium removal performances of HAS were obtained in pH-shift batch, pH-controlled batch, and continuous systems. These results emphasize the great importance of determining the most appropriate pH for Cr(VI) and total chromium removal, considering the operational mode of the proposed large-scale treatment system. Total chromium biosorption batch kinetics was well described by the Elovich model, whereas in the continuous system, the fitness of the kinetic models to the experimental data was pH dependent. X-ray photoelectron spectroscopy and kinetic studies clearly indicated that the reaction mechanism of Cr(VI) with HAS was the reductive biotransformation of Cr(VI) to Cr(III), which was partially released to the aqueous solution and partially biosorbed onto HAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.