Rosemary essential oil (REO) has many biological activities, such as antioxidant, anticarcinogenic, cognition-enhancing, analgesic and antimicrobial activities. The aim of this study was to prepare, at laboratory scale and larger scale, nanoencapsulating REO in order to reduce its volatilisation, light sensitivity and to enhance its water solubility. The nanoprecipitation method was applied to prepare polycaprolactone (PCL)-based nanocapsules loaded with REO at laboratory scale and then the optimal formulation obtained was scaled-up (×6) using the membrane contactor technique. The effect of several parameters, such as the evaporation method, the type of emulsifiers and the amount of the formulation products (PCL, REO, emulsifiers, etc.) on the REO-loaded nanocapsules properties (mean size, polydispersity index (PdI), zeta potential and REO loss) was evaluated at laboratory scale in order to obtain the optimal formulation. REO-loaded nanocapsules obtained from nanoprecipitation presented a nanometric mean size (220 ± 10 nm) with a PdI below 0.25, indicating an adequate homogeneity of the system, a negative zeta potential (-19.9 ± 4.6 mV) and a high encapsulation efficiency (∼99% for the major components). In addition, the membrane contactor technique gave similar results using an adequate pressure of the organic phase (0.8-1.2 bar). It is then suggested that the nanoprecipitation method can be suitable for the preparation of essential oil-loaded nanocapsules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.