We present necessary and sufficient conditions for the generic rigidity of body–bar frameworks on the three-dimensional fixed torus. These frameworks correspond to infinite periodic body–bar frame-works in
with a fixed periodic lattice.
An infinite periodic framework in the plane can be represented as a framework on a torus, using a Z 2 -labelled gain graph. We find necessary and sufficient conditions for the generic minimal rigidity of frameworks on the two-dimensional fixed torus T 2 0 . It is also shown that every minimally rigid periodic orbit framework on T 2 0 can be constructed from smaller frameworks through a series of inductive constructions. These are fixed torus adapted versions of the results of Laman and Henneberg respectively for finite frameworks in the plane. The proofs involve the development of inductive constructions for Z 2labelled graphs.
MSC: 52C25
a b s t r a c tRecent work from authors across disciplines has made substantial contributions to counting rules (Maxwell type theorems) which predict when an infinite periodic structure would be rigid or flexible while preserving the periodic pattern, as an engineering type framework, or equivalently, as an idealized molecular framework. Other work has shown that for finite frameworks, introducing symmetry modifies the previous general counts, and under some circumstances this symmetrized Maxwell type count can predict added finite flexibility in the structure.In this paper we combine these approaches to present new Maxwell type counts for the columns and rows of a modified orbit matrix for structures that have both a periodic structure and additional symmetry within the periodic cells. In a number of cases, this count for the combined group of symmetry operations demonstrates there is added finite flexibility in what would have been rigid when realized without the symmetry. Given that many crystal structures have these added symmetries, and that their flexibility may be key to their physical and chemical properties, we present a summary of the results as a way to generate further developments of both a practical and theoretic interest.
Finite pieces of locally isostatic networks have a large number of floppy modes because of missing constraints at the surface. Here we show that by imposing suitable boundary conditions at the surface the network can be rendered effectively isostatic. We refer to these as anchored boundary conditions. An important example is formed by a two-dimensional network of corner sharing triangles, which is the focus of this paper. Another way of rendering such networks isostatic is by adding an external wire along which all unpinned vertices can slide (sliding boundary conditions). This approach also allows for the incorporation of boundaries associated with internal holes and complex sample geometries, which are illustrated with examples. The recent synthesis of bilayers of vitreous silica has provided impetus for this work. Experimental results from the imaging of finite pieces at the atomic level need such boundary conditions, if the observed structure is to be computer refined so that the interior atoms have the perception of being in an infinite isostatic environment.
We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and bodybar frameworks. As the survey progresses we describe the key open problems related to inductions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.