Premise The degree of gametophyte dependence on the sporophyte life stage is a major feature that differentiates the life cycles of land plants, yet the evolutionary consequences of this difference remain poorly understood. Most evolutionary models assume organisms are either haploid or diploid for their entire lifespan, which is not appropriate for simulating plant life cycles. Here, we introduce shadie ( S imulating Ha ploid– Di ploid E volution), a new, simple Python program for implementing simulations with biphasic life cycles and analyzing their results, using SLiM 3 as a simulation back end. Methods We implemented evolutionary simulations under three realistic plant life cycle models supported in shadie , using either standardized or biologically realistic parameter settings to test how variation in plant life cycles and sexual systems affects patterns of genome diversity. Results The dynamics of single beneficial mutation fixation did not vary dramatically between different models, but the patterns of spatial variation did differ, demonstrating that different life histories and model parameters affect both genetic diversity and linkage disequilibrium. The rate of linkage disequilibrium decay away from selected sites varied depending on model parameters such as cloning and selfing rates, through their impact on effective population sizes. Discussion Evolutionary simulations are an exciting, underutilized approach in evolutionary research and education. shadie can aid plant researchers in developing null hypotheses, examining theory, and designing empirical studies, in order to investigate the role of the gametophyte life stage, and the effects of variation in plant life cycles, on plant genome evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.