Multi-gene panels are used to identify genetic causes of hereditary breast and ovarian cancer (HBOC) in large patient cohorts. This study compares the diagnostic workflow in two centers and gives valuable insights into different next-generation sequencing (NGS) strategies. Moreover, we present data from 620 patients sequenced at both centers. Both sequencing centers are part of the German consortium for hereditary breast and ovarian cancer (GC-HBOC). All 620 patients included in this study were selected following standard BRCA1/2 testing guidelines. A set of 10 sequenced genes was analyzed per patient. Twelve samples were exchanged and sequenced at both centers. NGS results were highly concordant in 12 exchanged samples (205/206 variants = 99.51 %). One non-pathogenic variant was missed at center B due to a sequencing gap (no technical coverage). The custom enrichment at center B was optimized during this study; for example, the average number of missing bases was reduced by a factor of four (vers. 1: 1939.41, vers. 4: 506.01 bp). There were no sequencing gaps at center A, but four CCDS exons were not included in the enrichment. Pathogenic mutations were found in 12.10 % (75/620) of all patients: 4.84 % (30/620) in BRCA1, 4.35 % in BRCA2 (27/620), 0.97 % in CHEK2 (6/620), 0.65 % in ATM (4/620), 0.48 % in CDH1 (3/620), 0.32 % in PALB2 (2/620), 0.32 % in NBN (2/620), and 0.16 % in TP53 (1/620). NGS diagnostics for HBOC-related genes is robust, cost effective, and the method of choice for genetic testing in large cohorts. Adding 8 genes to standard BRCA1- and BRCA2-testing increased the mutation detection rate by one-third.
Copy number detection is a mandatory analysis in HBOC families at least if no predisposing mutations were found by sequencing. Currently, high-resolution array CGH is our first choice of method of analysis due to unmatched detection precision. Although it seems possible to detect CNV from sequencing data, there currently is no satisfying tool to do so in a routine diagnostic setting.
The increasing application of gene panels for familial cancer susceptibility disorders will probably lead to an increased proposal of susceptibility gene candidates. Using ERCC2 DNA repair gene as an example, we show that proof of a possible role in cancer susceptibility requires a detailed dissection and characterization of the underlying mutations for genes with diverse cellular functions (in this case mainly DNA repair and basic cellular transcription). In case of ERCC2, panel sequencing of 1345 index cases from 587 German, 405 Lithuanian and 353 Czech families with breast and ovarian cancer (BC/OC) predisposition revealed 25 mutations (3 frameshift, 2 splice-affecting, 20 missense), all absent or very rare in the ExAC database. While 16 mutations were unique, 9 mutations showed up repeatedly with population-specific appearance. Ten out of eleven mutations that were tested exemplarily in cell-based functional assays exert diminished excision repair efficiency and/or decreased transcriptional activation capability. In order to provide evidence for BC/OC predisposition, we performed familial segregation analyses and screened ethnically matching controls. However, unlike the recently published RECQL example, none of our recurrent ERCC2 mutations showed convincing co-segregation with BC/OC or significant overrepresentation in the BC/OC cohort. Interestingly, we detected that some deleterious founder mutations had an unexpectedly high frequency of > 1% in the corresponding populations, suggesting that either homozygous carriers are not clinically recognized or homozygosity for these mutations is embryonically lethal. In conclusion, we provide a useful resource on the mutational landscape of ERCC2 mutations in hereditary BC/OC patients and, as our key finding, we demonstrate the complexity of correct interpretation for the discovery of “bonafide” breast cancer susceptibility genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.